
Gradual Machine Learning for Entity Resolution
(Technical Report)

Boyi Hou, Qun Chen, Yanyan Wang, Youcef Nafa, Zhanhuai Li
School of Computer Science, Northwestern Polytechnical University

Xi’an, Shaanxi
{ntoskrnl@mail.,chenbenben@,wangyanyan@mail.,youcef.nafa@mail.,lizhh@}nwpu.edu.cn

ABSTRACT
Usually considered as a classification problem, entity resolution (ER)
can be very challenging on real data due to the prevalence of dirty
values. The state-of-the-art solutions for ER were built on a variety
of learning models (most notably deep neural networks), which
require lots of accurately labeled training data. Unfortunately, high-
quality labeled data usually require expensive manual work, and
are therefore not readily available in many real scenarios. In this
paper, we propose a novel learning paradigm for ER, called gradual
machine learning, which aims to enable effective machine labeling
without the requirement for manual labeling effort. It begins with
some easy instances in a task, which can be automatically labeled
by the machine with high accuracy, and then gradually labels more
challenging instances by iterative factor graph inference. In gradual
machine learning, the hard instances in a task are gradually labeled
in small stages based on the estimated evidential certainty provided
by the labeled easier instances. Our extensive experiments on real
data have shown that the performance of the proposed approach is
considerably better than its unsupervised alternatives, and highly
competitive compared to the state-of-the-art supervised techniques.
Using ER as a test case, we demonstrate that gradual machine
learning is a promising paradigm potentially applicable to other
challenging classification tasks requiring extensive labeling effort.
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1 INTRODUCTION
The task of entity resolution (ER) aims at finding the records that
refer to the same real-world entity [15]. Consider the running ex-
ample shown in Figure 1. ER needs to match the paper records
between two tables, 𝑇1 and 𝑇2. The pair of < 𝑟1𝑖 , 𝑟2𝑗 >, in which
𝑟1𝑖 and 𝑟2𝑗 denote a record in 𝑇1 and 𝑇2 respectively, is called an
equivalent pair if and only if 𝑟1𝑖 and 𝑟2𝑗 refer to the same paper;
otherwise, it is called an inequivalent pair. In the example, 𝑟11 and
𝑟21 are equivalent while 𝑟11 and 𝑟22 are inequivalent. The state-of-
the-art solutions for ER were built on a variety of learning models
(e.g. deep neural network (DNN) [34]), which require lots of ac-
curately labeled training data. Unfortunately, high-quality labeled
data usually require expensive manual work, and therefore, may
not be readily available in many real scenarios.

It can be observed that the dependence of the existing super-
vised learning models on high-quality labeled data is not limited to
the task of ER. The dependence is actually crucial for their huge
success in various domains (e.g. image and speech recognition [49]).

𝑇1

𝑇2

Figure 1: An ER Example

However, it has been well recognized that in some real scenarios,
where high-quality labeled data is scarce, their efficacy can be se-
verely compromised. To address the limitation resulting from such
dependence, we propose a novel learning paradigm, called grad-
ual machine learning, in which gradual means proceeding in small
stages. Gradual machine learning aims to enable effective machine
labeling without the requirement for manual labeling effort. In-
spired by the gradual nature of human learning, which is adept at
solving the problems with increasing hardness, it begins with some
easy instances in a task, which can be automatically labeled by the
machine with high accuracy, and then gradually reasons about the
labels of the more challenging instances based on the observations
provided by the labeled easier instances.

We note that there already exist many learning paradigms for a
variety of classification tasks, including transfer learning [35], life-
long learning [13], curriculum learning [5], self-paced learning [27]
and self-training learning [30] to name a few. Transfer learning
focused on using the labeled training data in a domain to help
learning in another target domain. Lifelong learning studied how to
leverage the knowledge mined from past tasks for the current task.
Curriculum learning investigated how to organize a curriculum
(the presenting order of training examples) for improved model
training. Self-training learning aimed to improve the performance
of a supervised learning algorithm by incorporating unlabeled data
into the training data set. More recently, Snorkel [37] aimed to
enable automatic and massive machine labeling by specifying a
wide variety of labeling functions. The results of machine label-
ing were supposed to be fed to DNN for model training. However,
the following two properties of gradual machine learning make it
fundamentally different from the existing learning paradigms:

• Distribution misalignment between easy and hard instances
in a task. Gradual machine learning processes the instances
in the increasing order of hardness. Its scenario does not



satisfy the i.i.d (independent and identically distributed) as-
sumption underlying most existing machine learning mod-
els: the labeled easy instances are not representative of the
unlabeled harder instances. The distribution misalignment
between the labeled and unlabeled instances renders most
existing learning models unfit for gradual machine learning.
• Gradual learning by small stages in a task. Gradual machine
learning proceeds in small stages. At each stage, it typically
labels only one instance based on the evidential certainty
provided by the labeled easier instances. The process of iter-
ative labeling can be performed in an unsupervised manner
without requiring any human intervention.

We summarize the major contributions of this paper as follows:

(1) We propose a novel learning paradigm of Gradual Machine
Learning (GML), which can effectively eliminate the require-
ment for manual labeling effort for the challenging classifi-
cation tasks;

(2) We present a technical solution based on the proposed par-
adigm for entity resolution. We present a package of tech-
niques, including easy instance labeling, feature extraction
and influence modeling, and gradual inference, to enable
effective gradual machine learning for ER.

(3) Our extensive experiments on real data have validated the
efficacy of the proposed approach. Our empirical study has
shown that the performance of the proposed approach is
considerably better than the unsupervised alternatives, and
highly competitive compared to the state-of-the-art super-
vised techniques. It also scales well with workload size.

Note that a prototype of the proposed GML solution for ER has
been presented in the demo paper of [22]. Besides providing with
more technical details on GML for ER, this technical paper makes
the following new contributions:

(1) We propose a scalable approach for gradual inference. The
general approach consists of three steps, measurement of
evidential support, approximate estimation of inference prob-
ability, and construction of inference subgraph.

(2) We present the algorithms for the three steps of the scalable
approach to enable efficient gradual inference.

(3) We evaluate the performance sensitivity of the proposed
solution w.r.t various algorithmic parameters and its scalabil-
ity. Our experimental results have shown that the proposed
solution performs robustly w.r.t the parameters and it scales
well with workload size.

It is also noteworthy that we have recently applied the GML
paradigm on the task of aspect-level sentiment analysis [46]. Sim-
ilar to the task of ER, the performance of GML has been shown
to be highly competitive compared to the state-of-the-art DNN
techniques.

The rest of this paper is organized as follows: Section 2 reviews
related work. Section 3 defines the task of ER. Section 4 introduces
the GML paradigm. Section 5 proposes the technical solution for
ER. Section 6 presents the solution of scalable gradual inference
for ER. Section 7 presents our empirical evaluation results. Finally,
Section 8 concludes this paper.

2 RELATEDWORK
In this section, we review related work from the orthogonal per-
spectives of machine learning and entity resolution.

2.1 Machine Learning Paradigms
Note that many machine learning paradigms have been proposed
for a wide variety of classification tasks. Here, our intention is not
to exhaustively review all the work. We instead review those closely
related to our work and emphasize their difference from gradual
machine learning.

Traditional supervised machine learning algorithms make pre-
dictions on the future data using statistical models that are trained
on previously collected labeled training data [14]. In many real
scenarios, the labeled data may be too few to build a good classifier.
Semi-supervised learning [7, 23] addresses this problem by mak-
ing use of a large amount of unlabeled data and a small amount
of labeled data. Similarly, as an autonomous supervised learning
approach, self-supervised learning [31] usually extracts and uses
the naturally available relevant context and embedded meta data
as supervisory signals. Active learning [3, 4] is another special case
of supervised learning in which a learning algorithm is able to
interactively query the user (or some other information source) to
obtain the desired outputs at new data points. The main advantage
of active learning over traditional supervised learning is that it usu-
ally requires less labeled data for model training. Online learning
[25] and incremental learning [39] have also been proposed for the
scenarios where training data only becomes available gradually
over time or its size is out of system memory limit. Nevertheless,
the efficacy of the aforementioned learning paradigms depends
on the i.i.d assumption. Therefore, they can not be applied to the
scenario of gradual machine learning.

Curriculum learning (CL) [5] and self-paced learning (SPL) [27]
are to some extent similar to gradual machine learning in that
they were also inspired by the learning principle underlying the
cognitive process in humans, which generally starts with learning
easier aspects of a task, and then gradually takes more complex
examples into consideration. Both of them essentially investigated
how to feed model training with a sequence of samples ranked
by learning difficulty for improved performance. The difference is
that curriculum learning mainly focused on how to pre-organize
a curriculum (the presenting order of training examples), while
self-paced learning proposed to insert a regularizer into the train-
ing objective function to automatically optimizing the presenting
order in the training process. However, the models trained by cur-
riculum learning or self-paced learning are supposed to be applied
on a target workload satisfying the i.i.d assumption. Therefore,
as traditional supervised learning, their efficacy still depends on
good-quality training examples. More recently, some researchers
proposed the approach of self-paced deep clustering for image
classification [10, 21]. Iteratively alternating between deep repre-
sentation learning and clustering, it essentially used self-paced
learning to improve deep representation for better clustering per-
formance. At each iteration, a deep representation model is first
trained in a self-paced manner based on the clustering results, and
the resulting model is then applied to generate the deep representa-
tions for the instances in a target workload. It can be observed that
similar to traditional self-paced learning, the efficacy of self-paced
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representation learning still depends on the i.i.d assumption. On
the other hand, self-paced deep clustering used the classical cluster-
ing algorithms (eg. k-means) to label the instances based on their
learned representations in a batch manner. Therefore, self-paced
deep clustering is at its core a clustering approach. In contrast,
gradual machine learning gradually reasons about the labels of the
hard instances by factor graph inference without the assumption
of i.i.d. It does not need any clustering algorithm.

In contrast, transfer learning [35], allows the distributions of the
data used in training and testing to be different. The other learn-
ing techniques closely related to transfer learning include lifelong
learning [13] and multi-task learning [8]. Different from transfer
learning, lifelong learning usually assumes that the current task has
good training data, and aims to further improve the learning using
both the target domain training data and the knowledge gained in
past learning. Multi-task learning instead tries to learn multiple
tasks simultaneously even when they are different. However, these
learning paradigms can not be applied to the scenario of gradual
machine learning either. Firstly, focusing on unsupervised learning
within a task, gradual machine learning does not enjoy the access to
good labeled training data or a well-trained classifier to kick-start
learning. Secondly, the existing techniques transfer instances or
knowledge between tasks in a batch manner; they do not support
gradual learning by small stages on the instances with increasing
hardness within a task.

2.2 Work on Entity Resolution
Research effort on unsupervised entity resolution were mainly ded-
icated to devising various distance functions to measure pair-wise
similarity [32]. However, it has been empirically shown [6] that
the efficacy of these unsupervised techniques is limited. Alterna-
tively, ER can be automatically performed based on rules [18, 29, 42],
probabilistic theory [19, 43] and machine learning [14, 17, 26, 38].
Compared with the unsupervised alternatives, they can effectively
improve the quality of entity resolution to some extent. However,
good performance of these supervised techniques depends on the
presence of effective rules or a large quantity of accurately labeled
training data, which may not be readily available in real applica-
tions. To reduce the cost of data labeling, many active learning
techniques [33, 38] have been proposed for the task of ER. Active
learning has also been leveraged to ensure a pre-specified precision
requirement for ER [3, 4].

The progressive paradigm for ER [2, 47] has also been proposed
for the scenario in which ER should be processed efficiently but
does not necessarily require to generate high-quality results. Tak-
ing a pay-as-you-go approach, it studied how to maximize result
quality given a pre-specified resolution budget. However, the target
scenario of progressive ER is different from that of gradual ma-
chine learning, whose major challenge is to label the instances with
increasing hardness without resolution budget.

It has been well recognized that pure machine algorithms may
not be able to produce satisfactory results in practical scenarios [28].
Therefore, many researchers [9, 16, 20, 33, 44, 45, 48] have stud-
ied how to crowdsource an ER workload. While these researchers
addressed the challenges specific to crowdsourcing, we instead
investigate a different problem in this paper: how to enable unsu-
pervised gradual machine learning.

3 TASK STATEMENT
ER reasons about the equivalence between two records. Two records
are deemed to be equivalent if and only if they correspond to the
same real-world entity. Given an ER workload consisting of record
pairs, a solution labels each pair in the workload as matching or
unmatching.

Table 1: Frequently Used Notations.

Notation Description
𝐷 an ER workload consisting of record pairs
𝐷𝑖 a subset of 𝐷
𝑆 a labeling solution for 𝐷
𝑑 , 𝑑𝑖 a record pair in 𝐷

𝑃 (𝑑𝑖 ) the estimated equivalence probability of 𝑑𝑖
𝑓 , 𝑓𝑖 a feature of record pair
𝐹 , 𝐹𝑖 a feature set
𝐷 𝑓 the set of record pairs having the feature 𝑓

For the sake of presentation simplicity, we summarize the fre-
quently used notations in Table. 1. As usual, we measure the quality
of a labeling solution by the unified metric of F-1, which can be
represented by

𝑓1 (𝐷, 𝑆) =
2

1
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝐷,𝑆) +

1
𝑟𝑒𝑐𝑎𝑙𝑙 (𝐷,𝑆)

. (1)

in which 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐷, 𝑆) and 𝑟𝑒𝑐𝑎𝑙𝑙 (𝐷, 𝑆) denote the achieved pre-
cision and recall of 𝑆 on 𝐷 respectively.

Finally, the task of entity resolution is defined as follows:

Definition 3.1. [Entity Resolution]. Given a workload consist-
ing of record pairs, 𝐷 = {𝑑1, 𝑑2, · · · , 𝑑𝑛}, the task of entity reso-
lution is to give a labeling solution 𝑆 for 𝐷 such that 𝑓1 (𝐷, 𝑆) is
maximized.

4 LEARNING PARADIGM
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Figure 2: Paradigm Overview.

The process of gradual machine learning, as shown in Figure 2,
consists of the following three essential steps:
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• Easy Instance Labeling. Given a classification task, it is
usually very challenging to accurately label all the instances
in the task without good-coverage training examples. How-
ever, the work can become much easier if we only need to
automatically label some easy instances in the task. In the
case of ER, while the pairs with the medium similarities
are usually challenging for machine labeling, highly similar
(resp. dissimilar) pairs have fairly high probabilities to be
equivalent (resp. inequivalent). They can therefore be chosen
as easy instances. In real scenarios, easy instance labeling
can be performed based on the simple user-specified rules
or the existing unsupervised learning techniques. Gradual
machine learning begins with the observations provided by
the labels of easy instances. Therefore, the high accuracy of
automatic machine labeling on easy instances is critical for
its ultimate performance on a given task.
• Feature Extraction and Influence Modeling. Features
serve as the medium to convey the knowledge obtained
from the labeled easy instances to the unlabeled harder ones.
This step extracts the common features shared by the labeled
and unlabeled instances. To facilitate effective knowledge
conveyance, it is desirable that a wide variety of features
are extracted to capture as much information as possible.
For each extracted feature, this step also needs to model its
influence over the labels of its relevant instances.
• Gradual Inference. This step gradually labels the instances
with increasing hardness in a task. Since the scenario of
gradual learning does not satisfy the i.i.d assumption, we
propose to fulfill gradual learning from the perspective of
evidential certainty. As shown in Figure 2, we construct a
factor graph, which consisting of the labeled and unlabeled
instances and their common features. Gradual learning is
conducted over the factor graph by iterative factor graph
inference. At each iteration, it chooses an unlabeled instance
for labeling. The iteration is repeatedly invoked until all the
instances in a task are labeled. Note that in gradual inference,
a newly labeled instance at the current iteration would serve
as an evidence observation in the following iterations.

Since gradual machine learning is characterized by gradual in-
ference, we formulate the process of gradual inference. Formally,
we denote the model of factor graph corresponding to a classifica-
tion workload by 𝐺 . Suppose that 𝐺 consists of a set of evidence
variables Λ, whose labels are known, a set of inference variables
X, whose labels are unknown, and a group of factor functions of
variables to indicate the probabilistic relations among the variables,
denoted by F\ (𝐷𝑖 ) : 𝐷𝑖 → 𝑃\ (𝐷𝑖 ), in which 𝐷𝑖 denotes a set of
variables and 𝐷𝑖 ∈ PowerSet(Λ ∪ X).

Gradual inference iteratively labels an inference variable 𝑥𝑖 ∈ X
by factor graph inference until all the inference variables in 𝐺 are
labeled. In each iteration, GML generally chooses to label the infer-
ence variable with the highest degree of evidential certainty. Sup-
pose that the total number of label types, denoted by {𝐿1, 𝐿2, . . . , 𝐿𝑙 },
is 𝑙 . Given an instance 𝑑 , GML measures its evidential certainty by
the inverse of entropy [41] as follows

𝐸 (𝑑) = 1
𝐻 (𝑑) =

1
− ∑

1≤𝑖≤𝑙
𝑃𝑖 (𝑑) · log2𝑃𝑖 (𝑑)

, (2)

in which 𝐸 (𝑑) and𝐻 (𝑑) denote the evidential certainty and entropy
of 𝑑 respectively, and 𝑃𝑖 (𝑑) denotes the inferred probability of 𝑑
having the label of 𝐿𝑖 .

5 SOLUTION FOR ER
5.1 Easy Instance Labeling
Given an ER workload, the solution identifies the easy instances
by the simple rules specified on record similarity. The set of easy
instances labeled as matching is generated by setting a high lower-
bound on record similarity. Similarly, the set of easy instances
labeled as unmatching is generated by setting a low upperbound
on record similarity. To explain the effectiveness of the rule-based
approach, we introduce the monotonicity assumption of precision,
which was first defined in [3], as follows:

Assumption 1 (Monotonicity of Precision). A value interval 𝐼𝑖 is
dominated by another interval 𝐼 𝑗 , denoted by 𝐼𝑖 ⪯ 𝐼 𝑗 , if every value
in 𝐼𝑖 is less than every value in 𝐼 𝑗 . We say that precision is monotonic
with respect to a pair metric if for any two value intervals 𝐼𝑖 ⪯ 𝐼 𝑗 in
[0,1], we have 𝑃 (𝐼𝑖 ) ≤ 𝑃 (𝐼 𝑗 ), in which 𝑃 (𝐼𝑖 ) denotes the equivalence
precision of the set of instance pairs whose metric values are located
in 𝐼𝑖 .

According to the monotonicity assumption, we can statistically
state that a pair with a high (resp. low) similarity has a correspond-
ingly high probability of being an equivalent (resp. inequivalent)
pair. These record pairs can be deemed to be easy in that they can
be automatically labeled by the machine with high accuracy. In
comparison, the instance pairs having the medium similarities are
more challenging because labeling them either way by the machine
would introduce considerable errors.

Figure 3: Empirical Validation of the Monotonicity Assump-
tion.

We have empirically validated the monotonicity assumption on
the real datasets of DBLP-Scholor1 and Abt-Buy2. The precision
levels of different similarity intervals are shown in Figure 3. It can
be observed that statistically speaking, precision increases with
similarity value with notably rare exceptions. It is noteworthy that
given a machine metric for a classification task, the monotonicity
assumption of precision actually underlies its effectiveness as a
classification metric. Therefore, the easy instances in an ER task
can be similarly identified by other classification metrics.

In the scenario of ER, we suppose to identify 30%-50% of the
instances in a workload as easy, in order to provide an accurate
1available at https://dbs.uni-leipzig.de/file/DBLP-Scholar.zip
2available at https://dbs.uni-leipzig.de/file/Abt-Buy.zip

4



and also good-coverage initial labeling knowledge. From the mono-
tonicity assumption we can know that, the labels of easy instances
are always more accurate than hard ones. Considering the common
case that the similarity equals the probability and are uniformly
distributed on the [0, 1] interval, therefore, when labeling the easy
instances whose similarities are at the two extreme sides, the expec-
tation of their mislabeled ratio Y with regard to the easy instances

ratio 𝑒 is Y (𝑒) = 2
𝑒 ·

𝑒
2∫

0
𝑥𝑑𝑥 = 𝑒

4 . Within a tolerable initial mislabeled

ratio, we will expect 𝑒 as larger as possible to cover more labeling
knowledge. It can be seen that when 𝑒 = 0.3, Y is still a small value
less that 0.1, and when 𝑒 = 0.5, Y is still a small value close to 0.1.

5.2 Feature Extraction and Influence Modeling
The guiding principle of feature extraction is to extract a wide vari-
ety of discriminating features that can capture as much information
as possible from the record pairs. For ER, we extract the following
two types of features from record pairs:

(1) Attribute value similarity. This type of feature measures
a pair’s value similarity at each record attribute. Different
attributes may require different similarity metrics.

(2) Token feature. We denote a token by 𝑜𝑖 , the feature that 𝑜𝑖
occurs in both records by 𝑆𝑎𝑚𝑒 (𝑜𝑖 ) and the feature that 𝑜𝑖
occurs in one and only one record by 𝐷𝑖 𝑓 𝑓 (𝑜𝑖 ). Note that
the feature of 𝑆𝑎𝑚𝑒 (𝑜𝑖 ) serves as evidence for equivalence,
while𝐷𝑖 𝑓 𝑓 (𝑜𝑖 ) indicates the opposite. Unlike attribute value
similarity, which treats attribute values as a whole, token
feature considers the influence of each individual token on
equivalence probability. For the workloads with miscella-
neous tokens, not every token is highly discriminating (or
indicative of entity identity); therefore, we filter the tokens
by the metric of IDF (inverse document frequency).

It is worthy to point out that attribute similarity metrics have
been extensively studied in the literature [12]. In GML, given an
attribute type, we simply select the metrics which have been em-
pirically shown to be effective in indicating equivalence status. For
instance, on DBLP-Scholar, the appropriate metric for the venue at-
tribute is the edit distance, while the appropriate metric for the title
attribute is instead a hybrid metric combining Jaccard similarity
and edit distance. For the attribute of title, we also use the met-
ric of longest common substring because it has been widely used
to capture the similarity between two order-sensitive long token
strings. It is noteworthy that given an attribute type, its similarity
metrics can be applied on any pair of particular values. As a result,
the features of similarity metrics are usually shared by all the pair
instances provided that their corresponding attribute values are
not null.

For dataset with miscellaneous tokens such as Abt-Buy, since
not every token is highly discriminating (or indicative of entity
identity), we filter the tokens in a workload by the metric of IDF
(inverse document frequency). Specifically, only the tokens, whose
IDF value are within a pre-specified range (eg. [ln( 13𝑁 ), ln(

1
2𝑁 )],𝑁

denotes the total records in the dataset), are extracted as features. It
can be observed that if a token occurs too frequently, it usually has
a limited capability to indicate entity identity; on the other hand, if

it is a rare token, its few occurrences may render it almost useless
for gradual inference. By this filtering mechanism, we effectively
ensure that any token feature is not only to some extent indicative
of entity identity, but helpful to gradual inference.

The aforementioned two types of features can provide a good
coverage of the discriminating information contained in record
pairs. We observe that both types of features can be supposed to
satisfy the monotonicity assumption of precision. Therefore, as
shown in Figure 4, for each feature, we model its influence over
pair labels by a monotonous sigmoid function with two parameters,
𝛼 and 𝜏 , which denote the 𝑥-value of the function’s midpoint and
the steepness of the curve respectively. The 𝑥-value of the sigmoid
function represents the feature values of pairs, and the 𝑦-value
represents their equivalent probabilities as indicated by the feature.
Formally, given a feature 𝑓 and a pair 𝑑 , the influence of 𝑓 w.r.t 𝑑 is
represented by

𝑃𝑓 (𝑑) =
1

1 + 𝑒−𝜏𝑓 (𝑥𝑓 (𝑑)−𝛼𝑓 )
, (3)

in which 𝑥 𝑓 (𝑑) represents 𝑑’s feature value w.r.t 𝑓 . According to
Eq. 3, provided with the values of 𝛼 𝑓 and 𝜏𝑓 , the influence model
statistically dictates that any feature value of 𝑥 𝑓 (𝑑) corresponds to
an equivalence probability. Typically, the value of 𝑃𝑓 (𝑑) increases
with the feature value of 𝑑 , or 𝑥 𝑓 (𝑑). As illustrated by the examples
shown in Figure 4, different combinations of 𝛼 𝑓 and 𝜏𝑓 can result in
different influence model shapes. Note that since the second type of
features has the constant value of 1, we first align them with record
similarity and then model their influence by sigmoid functions.

feature value

Figure 4: the Examples of Sigmoid Function.

It is noteworthy that given a sigmoid model, gradual machine
learning essentially reasons about the labels of the middle points,
which correspond to the hard instances, provided with the labels
of the more extreme points at both sides, which correspond to the
easy instances. If it were not for the monotonicity assumption, es-
timating the labels of the middle points by regression would be
too erroneous because the more extreme observations at both sides
are not their valid representatives. Our solution overcomes this
hurdle by assuming monotonicity of precision and proceeding in
small stages, in each of which the regression results of only a few
instances close to the labeled easy instances are considered for
equivalence reasoning. Fortunately, monotonicity of precision is a
universal assumption underlying the effectiveness of the existing
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machine metrics for classification tasks. Therefore, our proposed so-
lution for modeling feature influence can be potentially generalized
for other classification tasks.

5.3 Gradual Inference
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Figure 5: An Example of Factor Graph.

To enable gradual machine learning, we construct a factor graph,
𝐺 , which consists of the labeled easy instances, the unlabeled hard
instances and their common features. In 𝐺 , the labeled easy in-
stances are represented by the evidence variables, the unlabeled
hard instances by the inference variables, and the features by the
factors. The value of each variable represents its corresponding
pair’s equivalence probability. An evidence variable has the con-
stant value of 0 or 1, which indicates the status of unmatching and
matching respectively. It participates in gradual inference, but its
value remains unchanged during the inference process.

An example of factor graph is shown in Figure 5. Each variable
has multiple factors, each of which corresponds to a feature. Since
a feature can be shared among multiple pairs, for presentation
simplicity, we represent a feature by a single factor and connect it
to multiple variables. Note that given a feature 𝑓 and a pair 𝑑 , the
influence of 𝑓 w.r.t 𝑑 is represented by the sigmoid function of

𝑃𝑓 (𝑑) =
1

1 + 𝑒−𝜏𝑓 (𝑥𝑓 (𝑑)−𝛼𝑓 )
, (4)

in which 𝑥 𝑓 (𝑑) represents 𝑓 ’s value w.r.t 𝑑 , which is known before-
hand, and 𝜏𝑓 and 𝛼 𝑓 represent the parameters of a sigmoid function,
which need to be learned. Accordingly, in the factor graph, we rep-
resent the factor weigh of 𝑓 w.r.t 𝑑 by

𝜔 𝑓 (𝑑) = \ 𝑓 (𝑑) · log(
𝑃𝑓 (𝑑)

1 − 𝑃𝑓 (𝑑)
) = \ 𝑓 (𝑑) · 𝜏𝑓 (𝑥 𝑓 (𝑑) − 𝛼 𝑓 ), (5)

in which log(·) codes the estimated influence of 𝑓 on 𝑑 by sigmoid
regression, and \ 𝑓 (𝑑) represents the confidence on influence esti-
mation. In practical implementation, we can estimate \ 𝑓 (𝑑) based
on the theory of regression error bound [11]. More details on the
estimation of \ 𝑓 (𝑑) will be discussed in Subsection 6.1.

Denoting the feature set of a pair 𝑑 by 𝐹𝑑 , a factor graph infers
the equivalence probability of 𝑑 , 𝑃 (𝑑), by:

𝑃 (𝑑) =

∏
𝑓 ∈𝐹𝑑

𝑒𝜔 𝑓 (𝑑)

1 + ∏
𝑓 ∈𝐹𝑑

𝑒𝜔 𝑓 (𝑑)
. (6)

The process of gradual inference essentially learns the parameter
values (𝛼 and 𝜏 ) of all the features such that the inferred results max-
imally match the evidence observations on the labeled instances.
Formally, the objective function can be represented by

(𝛼, 𝜏) = arg min
𝛼,𝜏
− log

∑
𝑉𝐼

𝑃𝛼,𝜏 (Λ,𝑉𝐼 ), (7)

in which Λ denotes the observed labels of evidence variables, 𝑉𝐼
denotes the inference variables in 𝐺 , and 𝑃𝛼,𝜏 (Λ,𝑉𝐼 ) denotes the
joint probability of the variables in 𝐺 . Since the variables in 𝐺 are
conditionally independent, 𝑃𝛼,𝜏 (Λ,𝑉𝐼 ) can be represented by:

𝑃𝛼,𝜏 (Λ,𝑉𝐼 ) =
∏

𝑑∈Λ∪𝑉𝐼
𝑃𝛼,𝜏 (𝑑) . (8)

Accordingly, the objective function can be simplified into

(𝛼, 𝜏) = arg min
𝛼,𝜏
−
∑
𝑑∈Λ

log 𝑃𝛼,𝜏 (𝑑). (9)

Considering the unbalanced populations of two classes, we weight
the observations of two classes to perform the weighted maximum
likelihood estimation as in [1, 24]. The approach essentially weights
positive and negative observations by the inverses of their total
occurrences. Specifically, given a factor graph consisting of 𝑛−
unmatching and 𝑛+ matching observations, we set the weights of
the unmatching andmatching observations as 1 and 𝑛−

𝑛+
respectively.

Accordingly, the objective function can be finally represented by

(𝛼, 𝜏) = arg min
𝛼,𝜏
−
∑
𝑑∈Λ

𝑡𝑑 · log 𝑃𝛼,𝜏 (𝑑), (10)

in which 𝑡𝑑 = 1 if 𝑑 is labeled as unmatching, and 𝑡𝑑 =
𝑛−
𝑛+

if 𝑑 is
labeled as matching.

Given a factor graph, 𝐺 , at each stage, gradual inference first
reasons about the parameter values of the features and the equiva-
lence probabilities of the unlabeled pairs by maximum likelihood,
and then labels the unlabeled pair with the highest degree of evi-
dential certainty. Note that GML defines evidential certainty as the
inverse of entropy. Formally, in the case of ER, evidential certainty
is measured by

𝐸 (𝑑) = 1
−(𝑃 (𝑑) · log2𝑃 (𝑑) + (1 − 𝑃 (𝑑)) · log2 (1 − 𝑃 (𝑑)))

, (11)

in which 𝐸 (𝑑) denotes the evidential certainty of 𝑑 .

6 SCALABLE GRADUAL INFERENCE
It can be observed that repeated inference by maximum likelihood
estimation over a large-sized factor graph of the whole variables is
usually very time-consuming [50]. As a result, there is a need for
efficient gradual inference that can scale well with large workloads.
In this section, we present a scalable approach that can effectively
fulfill gradual learning without repeatedly inferring over the entire
factor graph.
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Algorithm 1: Scalable Gradual Inference
1 while there exists any unlabeled variable in 𝐺 do
2 𝑉 ′ ← all the unlabeled variables in 𝐺 ;
3 for 𝑣 ∈ 𝑉 ′ do
4 Measure the evidential support of 𝑣 in 𝐺 ;
5 end
6 Select top-m unlabeled variables with the most

evidential support (denoted by 𝑉𝑚) ;
7 for 𝑣 ∈ 𝑉𝑚 do
8 Estimate the probability of 𝑣 in 𝐺 by approximation;
9 end

10 Select top-𝑘 certain variables in terms of entropy in 𝑉𝑚
based on the approximate probabilities (denoted by 𝑉𝑘 )
;

11 for 𝑣 ∈ 𝑉𝑘 do
12 Compute the probability of 𝑣 in 𝐺 by the factor

graph inference over a subgraph of 𝐺 ;
13 end
14 Label the variable with the minimal entropy in 𝑉𝑘 ;
15 end

The scalable solution is crafted based on the following observa-
tions:

• Many unlabeled inference variables in the factor graph may
be only weakly linked through the factors to the evidence
variables. Due to lack of evidential support, their inferred
probabilities would be quite ambiguous, i.e. close to 0.5. As
a result, at each stage, only the inference variables that have
received considerable support from the evidence variables
need to be considered for labeling;
• With regard to the probability inference of a single variable
𝑣 in a large factor graph, it can be effectively approximated
by considering the potentially much smaller subgraph con-
sisting of 𝑣 and its neighboring variables. The inference over
the subgraph can usually be much more efficient than over
the original entire graph.

The process of scalable gradual inference is sketched in Algo-
rithm 1. It first selects the top-𝑚 unlabeled variables with the most
evidential support in 𝐺 as the candidates for probability inference.
To reduce the invocation of maximum likelihood estimation, it then
approximates probability inference by an efficient algorithm on the
𝑚 candidates. Finally, it infers via maximum likelihood the proba-
bilities of only the top-𝑘 most promising unlabeled variables among
the𝑚 candidates. For each variable in the final set of 𝑘 candidates,
its probability is not inferred over the entire graph of 𝐺 , but over a
potentially much smaller subgraph. In the rest of this section, we
will present the technique for each of the three steps.

6.1 Measurement of Evidential Support
Since the influence of a feature over the pairs is modeled by a sig-
moid function, we consider the evidential support that an unlabeled
variable receives from a feature as the confidence on the regression
result provided by its corresponding function, denoted by \ 𝑓 (𝑑).

Given an unlabeled variable, 𝑑 , we first estimate its evidential sup-
port provided by each of its factors based on the theory of regression
error bound [11], and then aggregate them to estimate its overall
evidential support based on the Dempster-Shafer theory [40].

Formally, for the influence estimation of a single feature 𝑓 on
the variables, the process of parameter optimization corresponds to
a linear regression between the natural logarithmic coded influence
in Eq. 5, hereinafter denoted by 𝑙𝑓 (𝑑), and the feature value 𝑥 𝑓 (𝑑),
as follows

𝑙𝑓 (𝑑) = 𝜏𝑓 · 𝑥 𝑓 (𝑑) − 𝜏𝑓 · 𝛼 𝑓 + Y, (12)
in which Y denotes the regression residual. The parameters 𝛼 𝑓 and
𝜏𝑓 are optimized by minimizing the regression residual as follows:

(𝛼 𝑓 , 𝜏𝑓 ) = arg min
𝛼𝑓 ,𝜏𝑓

∑
𝑑∈Λ𝑓

𝑡𝑑 · (𝑙𝑓 (𝑑) − (𝜏𝑓 · 𝑥 𝑓 (𝑑) − 𝜏𝑓 · 𝛼 𝑓 ))2,

(13)
in which Λ𝑓 denotes the set of labeled pairs having the feature 𝑓 .
As in Eq. 10, 𝑡𝑑 denotes the weights of matching and unmatching
observations.

According to the theory of linear regression error bound, given a
pair 𝑑 , its prediction error bound 𝛿 (𝑙𝑓 (𝑑)) and the confidence level
\ 𝑓 (𝑑) satisfy the following formula

𝛿 (𝑙𝑓 (𝑑)) =

𝑡 (1−\ 𝑓 (𝑑))/2 ( |Λ𝑓 | − 2) · �̂�2 ·

√√√√√
1 + 1

𝑛
+

(𝑥 𝑓 (𝑑) − 𝑥 𝑓 )2∑
𝑑𝑖 ∈Λ𝑓

(𝑥 𝑓 (𝑑𝑖 ) − 𝑥 𝑓 )2
,

(14)
in which 𝑡 (1−\ 𝑓 (𝑑))/2 ( |Λ𝑓 | − 2) represents the Student’s 𝑡-value
with |Λ𝑓 | − 2 degree of freedom at (1 − \ 𝑓 (𝑑))/2 quantile, and

�̂�2 =
1

|Λ𝑓 | − 2
∑

𝑑𝑖 ∈Λ𝑓

(𝑙𝑓 (𝑑𝑖 ) − (𝜏𝑓 · 𝑥 𝑓 (𝑑𝑖 ) − 𝜏𝑓 · 𝛼 𝑓 ))2, (15)

and
𝑥 𝑓 =

1
|Λ𝑓 |

∑
𝑑𝑖 ∈Λ𝑓

𝑥 𝑓 (𝑑𝑖 ) . (16)

Given an error bound of 𝛿 (𝑙𝑓 (𝑑)), we measure the evidential
support of an unlabeled variable 𝑑 provided by 𝑓 by estimating
its corresponding regression confidence level \ 𝑓 (𝑑) according to
Eq. 14. Then, we use the Dempster-Shafer (D-S) theory [40] to
arrive at a degree of belief that takes into account all the available
evidences. Given an unlabeled variable 𝑣 , the evidential support
provided by a feature 𝑓 can be considered to be the extent that
𝑓 supports the inference on the value of 𝑣 : a value of 1 means
complete support while a value of 0 corresponds to the lack of any
support. Suppose that 𝑣 has 𝑙 features, {𝑓1,· · · ,𝑓𝑙 }, and the evidential
support 𝑣 receiving from 𝑓𝑖 is denoted by \𝑖 . We first normalize
the values of \𝑖 by 1+\𝑖

2 so that they fall into the range of [0.5, 1].
Then, according to the Dempster’s rule, the evidential support of 𝑣
provided by its features can be represented by

\𝑣 =

∏
1≤𝑖≤𝑙

\𝑖∏
1≤𝑖≤𝑙

\𝑖 +
∏

1≤𝑖≤𝑙
(1 − \𝑖 )

. (17)

On time complexity, the total cost of evidential support measure-
ment can be represented by𝑂 (𝑛2 ·𝑛𝑓 ), in which 𝑛 denotes the total
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number of instances in a task and 𝑛𝑓 denotes the total number of
extracted features. Formally, let 𝑍 be the universal set representing
all possible states of a system under consideration. By a function
of Basic Belief Assignment (BBA), the D-S theory assigns a belief
mass to each element of the power set. The mass of an element
𝐸𝑖 , 𝑚(𝐸𝑖 ), expresses the proportion of all relevant and available
evidence that supports the claim that the actual state belongs to 𝐸𝑖
but to no particular subset of 𝐸𝑖 . The masses of elements satisfy∑

𝐸𝑖 ∈2𝑍
𝑚(𝐸𝑖 ) = 1,

and
𝑚(∅) = 0.

Note that if only singleton propositions are assigned belief masses,
a BBA function reduces to a classical probability function.

The kernel of D-S theory is Dempster’s rule, which is rooted
in probability theory and constitutes a conjunctive probabilistic
inference process. It adopts the orthogonal sum operation to com-
bine evidence, which is rooted in calculating the joint probability
of independent events. With two pieces of independent evidence
represented by two BBAs𝑚1 and𝑚2 respectively, the joint mass of
a proposition 𝐸 is calculated in the following manner:

𝑚1,2 (𝐸) =
∑
𝐸𝑖∩𝐸 𝑗=𝐸≠∅𝑚1 (𝐸𝑖 ) ·𝑚2 (𝐸 𝑗 )

1 −∑𝐸𝑖∩𝐸 𝑗=∅𝑚1 (𝐸𝑖 ) ·𝑚2 (𝐸 𝑗 )
,

and
𝑚1,2 (∅) = 0.

in which
∑
𝐸𝑖∩𝐸 𝑗=∅𝑚1 (𝐸𝑖 ) ·𝑚2 (𝐸 𝑗 ) measures the amount of con-

flict between the two mass sets.

6.2 Approximate Estimation of Inferred
Probability

To reduce the prohibitive cost of factor graph inference, there is a
need to efficiently approximate the inferred probabilities of these
top-m variables such that only a small portion (top-k) of them needs
to be inferred using factor graph inference.

As previously mentioned, the feature’s natural logarithmic in-
fluence w.r.t a pair can be estimated by the linear regression value
based on Eq. 12. Therefore, we approximate the factor weight of 𝑓
w.r.t 𝑑 , �̂� 𝑓 (𝑑), by

�̂� 𝑓 (𝑑) = \ 𝑓 (𝑑) · 𝜏𝑓 (𝑥 𝑓 (𝑑) − 𝛼 𝑓 ), (18)

in which \ 𝑓 (𝑑) represents 𝑓 ’s normalized confidence level on the
regression result w.r.t 𝑑 and 𝜏𝑓 , and 𝛼 𝑓 are the regression param-
eter values estimated by Eq. 13. Accordingly, a pair’s equivalence
probability can be approximated by leveraging the approximate
factor weights of all its features as follows

𝑃 (𝑑) =

∏
𝑓 ∈𝐹𝑑

𝑒�̂� 𝑓 (𝑑)

1 + ∏
𝑓 ∈𝐹𝑑

𝑒�̂� 𝑓 (𝑑)
, (19)

in which 𝐹𝑑 denotes the feature set of 𝑑 .
Accordingly, the entropy of 𝑑 can be approximated by

�̂� (𝑑) = −(𝑃 (𝑑) · log2𝑃 (𝑑) + (1 − 𝑃 (𝑑)) · log2 (1 − 𝑃 (𝑑))) . (20)

In the initial stages, factor graph inference can even be saved if
the entropy of the top variable in the 𝑘 candidates is considerably
smaller than that of any other variable.

In practical implementation, due to high efficiency of evidential
support measurement and inference probability approximation, the
number of candidate inference variables selected for approximate
probability estimation (𝑚) can be set to a large value provided that
the selected variables receive considerable support. In the case of ER,
we set the threshold of evidential support at 0.9. It means that, we
have the combined confidence level of at least 0.9 that a candidate
variable can be inferred within the specified error bound based on
linear regression by its features. By this threshold, the value of𝑚
should be set to be in the order of thousands on our test workloads.
On the other hand, the proposed approximation technique can
usually provide with an accurate ranking on inference probability.
Therefore, considering inefficiency of factor graph inference, we
suggest to set the number of candidate inference variables chosen
for factor graph inference (𝑘) to a much smaller value, or in the
order of tens. Our empirical evaluation in Section 7 has showed
that to a large extent, the performance of scalable gradual inference
is not sensitive to the parameter settings of𝑚 and 𝑘 .

On time complexity, the total cost of approximate probability
estimation can be represented by𝑂 (𝑛 ·𝑛𝑓 ·𝑚), in which 𝑛𝑓 denotes
the total number of extracted features.

6.3 Construction of Inference Subgraph
Factor inference over a large graph is usually very time-consuming.
Fortunately, as shown in [50], it can be effectively approximated
by considering the subgraph consisting of 𝑣𝑖 and its neighboring
variables. Specifically, consider the subgraph consisting of 𝑣𝑖 and
its 𝑟 -hop neighbors. It has been shown that increasing the diam-
eter of neighborhood (the value of 𝑟 ) can effectively improve the
approximation accuracy, and with even a small value of 𝑟 (e.g. 2-3),
𝑟 -hop inference can be sufficiently accurate in many real scenarios.

However, in the scenario of gradual inference, some factors (e.g.
attribute value similarity) are usually shared by almost all the vari-
ables. As a result, 𝑟 -hop inference may result in a subgraph covering
almost all the variables. Therefore, we propose to limit the size of
inference subgraph in the followingmanner: (1) Gradual learning in-
fers the label of a pair based on its features. Approximate inference
only needs to consider the factors corresponding to the features of
𝑣𝑖 ; (2) The influence distribution of a factor is estimated based on its
evidence variables. Approximate inference only needs to consider
the evidence variables sharing at least one feature with the target
inference variable; (3) The total number of evidence variables for
any given feature can be limited. As pointed out in [11], the accu-
racy of function regression generally increases with the number
of sample observations. However, the validity of this proposition
depends on the uniform distribution of the samples. The additional
samples very similar to the existing ones can only produce marginal
improvement on prediction accuracy. Therefore, we can limit the
total number of evidence variables for each feature by dividing the
feature value range of [0,1] into multiple uniform intervals (e.g.
10 intervals, [0,0.1], [0.1,0.2], . . ., [0.9,1.0]), and then limiting the
number of observations for each interval (e.g. 200).
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It is worthy to point out that our proposed approach for subgraph
construction is consistent with the principle of 𝑟 -hop approximation
in that it essentially opts to include those factors and variables in
the close neighborhood of a target variable in the subgraph.

7 EMPIRICAL EVALUATION
In this section, we empirically evaluate the performance of GML on
real data. We compare GML with both unsupervised and supervised
alternatives, which include

• Unsupervised Clustering (denoted by UC). UC maps record
pairs to points in a multi-dimensional feature space and
then clusters them into distinct classes based on the distance
between them. In our implementation, we used the classical
k-means to classify pairs into two classes.
• Unsupervised Self-Paced Deep Clustering (denoted by US-
PDC). We adapt the unsupervised self-paced deep clustering
approach proposed for image clustering [10, 21] to ER. Unlike
UC, in which instance representation is specified beforehand,
USPDC alternates between representation learning and un-
supervised clustering. In our implementation, we trained
the similarity vector encoder by DeepMatcher [34], which
is the state-of-the-art DNN classifier proposed for ER. As
in [21], we finetuned a DNN representation model based
on self-paced learning and used the classical k-means for
clustering.
• Unsupervised Rule-based (denoted by UR). UR reasons about
pair equivalence based on the rules handcrafted by the hu-
man. Based on knowledge on test data, the rules are spec-
ified in terms of record similarity. For fair comparison, in
our implementation, UR first uses the result of unsupervised
clustering (UC) to estimate the proportions of matching and
unmatching instances in a workload, and then proportionally
identify the matching and unmatching instances by record
similarity.
• Learning based on Support Vector Machine (denoted by
SVM). The SVM-based approach [14] also maps record pairs
to points in a multi-dimensional feature space. Unlike un-
supervised clustering, it fits an optimal SVM classifier on
labeled training data and then uses the trained model to label
the pairs in test data.
• Deep Learning (denoted by DNN). The deep learning ap-
proach [34] is the state-of-the-art supervised learning ap-
proach for ER. Representing each record pair by a vector, it
first trains a DNN on labeled training data, and then uses
the trained model to classify the pairs in test data.

It is noteworthy that the existing semi-supervised learning and
active learning techniques are usually applied in the scenario where
only a limited number of labeled training data are available. Pro-
vided with enough training data, the performance of supervised
techniques (e.g. DNN) can be expected to be no worse than their
semi-supervised or active learning counterparts. Therefore, the
aforementioned four techniques can provide a good coverage of
the existing solutions for ER.

7.1 Experimental Setup
Our evaluation is conducted on three real datasets, which are de-
scribed as follows:
• DBLP-Scholar3 (denoted by DS): The DS dataset contains
the publication entities from DBLP and the publication enti-
ties from Google Scholar. The experiments match the DBLP
entries with the Scholar entries.
• Abt-Buy4 (denoted by AB): The AB dataset contains the
product entities from both Abt.com and Buy.com. The exper-
iments match the Abt entries with the Buy entries.
• Songs5 (denoted by SG): The SG dataset contains song enti-
ties, some of which refer to the same songs. The experiments
match the song entries in the same table.

As in the previous study [34], we use the blocking technique to
filter the instance pairs having a small chance to be equivalent. GML
computes pair similarity by aggregating the attribute similarities
via a weighted sum [15]. For fair comparison, given a percentage of
easy instances (e.g. 30%), GML first uses the result of unsupervised
clustering (UC) to estimate the proportions of matching and un-
matching instances in a workload, and then proportionally identify
the easy matching and unmatching instances by record similarity.

We used the platform of PyTorch [36] to implement GML. In the
comparative study, we set the ratio of easy instances at 30% on all
the test workloads. For scalable gradual inference, we set𝑚 = 2000
and 𝑘 = 10. Our evaluation results in Subsection. 7.3 will show that
GML performs very robustly w.r.t various parameter settings. Our
implementation codes of GML and the used test datasets have also
been made open-source available at the website6.

7.2 Comparative Study
The detailed evaluation results are presented in Table 2. For SVM
and DNN, we report their performance provided with different
sizes of training data, which is measured by the fraction of train-
ing data among the whole dataset. In Table 2, the percentage of
training data is listed at the second low in the table. For instance,
for SVM, “30%” means that 30% of a dataset are used for training;
for DNN, “30%(25%:5%)” means that 25% of a dataset are used for
model training, 5% are used for validation. Since the performance
of SVM and DNN depends on the randomly-selected training data,
the reported results are the averages over ten runs.

It can be observed that GML performs considerably better than
the unsupervised alternatives, UC, USPDC and UR. In most cases,
their performance differences in terms of F-1 are larger than 5%.
Due to the inherent challenge of ER, the simple UR and UC ap-
proaches can not achieve satisfactory performance. It is worthy
to point out that the more sophisticated USPDC approach fails to
outperform the simpler alternative of UC on the test workloads.
On AB, USPDC even performs considerably worse than UC with
the margin of more than 0.3. Our closer scrutiny has revealed that
even though DeepMatcher provides with a powerful feature rep-
resentation capability tailored to ER, the “easy” training instances
selected by k-means may contain too much label noise. To be more

3available at https://dbs.uni-leipzig.de/file/DBLP-Scholar.zip
4available at https://dbs.uni-leipzig.de/file/Abt-Buy.zip
5available at http://pages.cs.wisc.edu/˜anhai/data/falcon_data/songs
6https://chenbenben.org/GML/GML-ER.zip
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Table 2: Comparative Evaluation of GML

GML UC USPDC UR

recall precision F1 recall precision F1 recall precision F1 recall precision F1

DS 0.922 0.927 0.924 0.793 0.939 0.860 0.920 0.797 0.854 0.808 0.958 0.877
AB 0.583 0.592 0.587 0.689 0.444 0.540 0.919 0.130 0.228 0.696 0.449 0.546
SG 0.982 0.993 0.987 0.995 0.808 0.892 0.922 0.886 0.904 0.994 0.811 0.893

SVM

10% 20% 30%

recall precision F1 recall precision F1 recall precision F1

DS 0.890 0.918 0.903 0.892 0.918 0.904 0.896 0.921 0.908
AB 0.476 0.677 0.559 0.608 0.524 0.563 0.676 0.483 0.563
SG 0.982 0.992 0.987 0.981 0.993 0.987 0.980 0.995 0.987

DNN

10%(5%:5%) 20%(15%:5%) 30%(25%:5%)

recall precision F1 recall precision F1 recall precision F1

DS 0.949 0.869 0.907 0.945 0.956 0.950 0.982 0.929 0.955
AB 0.043 0.254 0.074 0.441 0.601 0.509 0.444 0.707 0.546
SG 0.777 0.830 0.802 0.952 0.900 0.925 0.938 0.970 0.954

specific, USPDC regards the instances closest to a cluster center as
the “easy” ones, which are then used for the following iteration of
representation learning. In the scenario of ER, this selection strat-
egy may result in noisy training examples. To make matters worse,
they may not be able to sufficiently represent the characteristics
of more challenging instances, which are further away from the
cluster centers. As a result, for USPDC, an initial clustering error
can easily snowball after several iterations. Our experimental re-
sults clearly illustrate the limitations of USPDC. In contrast, GML
labels easy instances only once before gradual inference. Our exper-
imental results have shown that the strategy of considering a pair
instance as easy based on record similarity is considerably more
accurate than distance-based clustering. Furthermore, as shown
in Subsection 7.3, compared with iterative representation learning
based on DNN, gradual inference is more robust w.r.t the accuracy
of easy instance labeling.

We can also observe that the performance of GML in terms of F-1
is also highly competitive compared to both supervised approaches
of SVM and DNN. GML beats both supervised approaches of SVM
and DNN in most cases if the percentage of provided training data
is no larger than 30%. When the size of training data increases,
the performance of SVM and DNN generally improves as expected.
Even with the training data size at 30%, GML achieves roughly
the same performance as SVM and DNN on all the 3 datasets. It is
worthy to point out that unlike the supervised SVM and DNN models,
GML does not use any labeled training data. These experimental
results evidently demonstrate the efficacy of GML.

Table 3: Sensitivity Evaluation w.r.t Easy Instance Labeling

F-1(Easy Acc(%)) 30% 40% 50% 80% 100%

DS 0.924(99.7) 0.924(99.7) 0.922(99.3) 0.884(92.3) 0.877(89.6)
AB 0.587(96.5) 0.576(95.3) 0.573(94.4) 0.570(92.2) 0.546(90.0)
SG 0.987(99.7) 0.987(99.6) 0.987(99.5) 0.825(97.3) 0.893(96.0)

Table 4: Sensitivity Evaluation w.r.t the Parameter𝑚

F-1 𝑚 = 500 𝑚 = 1000 𝑚 = 2000

DS 0.922 0.924 0.924
AB 0.587 0.587 0.587
SG 0.987 0.987 0.987

Table 5: Sensitivity Evaluation w.r.t the Parameter 𝑘

F-1 𝑘 = 1 𝑘 = 5 𝑘 = 10

DS 0.924 0.924 0.924
AB 0.587 0.588 0.587
SG 0.987 0.987 0.987

Table 6: Sensitivity Evaluation w.r.t the Parameter 𝛿

F-1 𝛿 = 50 𝛿 = 100 𝛿 = 200

DS 0.922 0.924 0.924
AB 0.587 0.583 0.587
SG 0.987 0.987 0.987
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7.3 Sensitivity Evaluation
In the sensitivity evaluation, we vary the ratio of the initial easy
instances, the number of the pair candidates selected for inference
probability approximation (the parameter𝑚 in Algorithm 1), and
the number of the pair candidates selected for factor graph inference
(the parameter 𝑘 in Algorithm 1). The value of𝑚 is set between
500 and 2000, and the value of 𝑘 is set between 1 and 10. While
evaluating the sensitivity of GMLw.r.t a specific parameter, we fixed
all the other parameters at the same values. The detailed evaluation
results are reported in Table 3, 4 and 5.

The evaluation results w.r.t the ratio of easy instances have been
shown in Table 3, in which the percentage values in the parentheses
represent the accuracy of easy instance labeling. Note that due to
the unbalanced numbers of inequivalent and equivalent pairs, the
overall high accuracy of easy instance labeling may not necessarily
result in similarly high F-1 performance. It can be observed that
given a reasonable range on the ratio of easy instances (between
30% and 50%), the performance of GML is very stable. However, it
does not mean that GML can afford to set the ratio of easy instances
at arbitrarily high. In Table 3, we also report the performance of
GML with the ratio set at 80% and 100%. Note that with the ratio of
100%, GML is equivalent to UR. We can observe that in both cases,
the performance of GML deteriorates considerably. In GML, the
performance of gradual inference depends on the label accuracy of
evidential easy instances. If the ratio is set too high, easy instance
labeling would introduce considerable errors and the labeling accu-
racy of hard instances would decrease as well.

Similarly, as shown Table 4 and 5, the performance of GML is
highly robust w.r.t the parameters of𝑚 and 𝑘 . Our experimental
results bode well for GML’s applicability in real applications. It is
worthy to point out that even though setting𝑘 to a small number can
only marginally affect the performance of GML, it does not mean
that the factor graph inference is unwanted, can thus be replaced
by the more efficient approximate probability estimation. On the
contrary, we have observed in the experiments that there actually
exist many pair instances whose factor graph inference results are
sufficiently different from their approximated probabilities such
that their labels are flipped by factor graph inference, especially in
the final stages of gradual inference.

7.4 Scalability Evaluation
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Figure 6: Scalability Evaluation.

In this section, we evaluate the scalability of the proposed scal-
able approach for GML. Based on the entities in DBLP and Scholar,

we generate different-sized DS workloads, from 10000 to 40000. The
detailed evaluation results on scalability are presented in Figure 6,
in which the x-axis denotes workload size and the y-axis denotes
the cost multiple with the runtime spent on the workload of 10𝑘
as the baseline. It can be observed that the total consumed time
increases nearly linearly with workload size. Even though the total
number of features consistently increases with workload size, the
number of features any instance has is quite stable (in the order of
tens). Because the number of evidential observations for each inter-
val of feature values is limited by 𝛿 , the average cost of the scalable
GML spent on each unlabeled pair only increases marginally as the
workload increases. Therefore, the scalable approach scales well
with workload size.

8 CONCLUSION
In this paper, we have proposed a novel learning paradigm, called
gradual machine learning. We have also developed an effective
solution based on it for entity resolution. Finally, our empirical
study on real data has validated the efficacy of GML.

Our work on gradual machine learning is an ongoing effort.
Using ER as a test case, we have demonstrated that gradual ma-
chine learning is a promising paradigm. It is very interesting to
develop the solutions based on GML for other challenging classifi-
cation tasks besides entity resolution and sentiment analysis. On
the other hand, even though GML is proposed as an unsupervised
learning paradigm in this paper, human work can be potentially
integrated into its process for improved performance. An interest-
ing challenge is then how to effectively improve the performance
of gradual machine learning with the minimal effort of human in-
tervention, which include but are not limited to manually labeling
some instances.
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