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a b s t r a c t

The state-of-the-art solutions for Aspect-Level Sentiment Analysis (ALSA) were built on a variety of
Deep Neural Networks (DNN), whose efficacy depends on large quantities of accurately labeled training
data. Unfortunately, high-quality labeled training data usually require expensive manual work, thus
may not be readily available in real scenarios. In this paper, we propose a novel approach for aspect-
level sentiment analysis based on the recently proposed paradigm of Gradual Machine Learning (GML),
which can enable accurate machine labeling without the requirement for manual labeling effort. It
begins with some easy instances in a task, which can be automatically labeled by the machine with
high accuracy, and then gradually labels the more challenging instances by iterative factor graph
inference. In the process of gradual machine learning, the hard instances are gradually labeled in
small stages based on the estimated evidential certainty provided by the labeled easier instances.
Our extensive experiments on the benchmark datasets have shown that the performance of the
proposed solution is considerably better than its unsupervised alternatives, and also highly competitive
compared with the state-of-the-art supervised DNN models.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Aspect-Level Sentiment Analysis (ALSA) [1], a fine-grained
lassification task, is highly valuable to both consumers and com-
anies because it can provide them with detailed opinions ex-
ressed toward certain aspects of an entity. The task of ALSA
as been classified into two finer subtasks, Aspect-Term Senti-
ent Analysis (ATSA) and Aspect-Category Sentiment Analysis

ACSA) [2]. ATSA aims to predict the sentiment polarity associated
ith an explicit aspect term appearing in the text. ACSA instead
eals with both explicit and implicit aspects. It needs to predict
he sentiment polarities of all the pre-specified aspects in a re-
iew, even though an aspect term may not explicitly appear in
he text. For instance, consider the running example shown in
able 1, in which ri and sij denote the review and sentence iden-

tifiers respectively. The review r2 expresses the opinions about
a laptop from two aspects, battery and performance. The goal
f ATSA is to predict the sentiment polarity toward the explicit
spect battery; while ACSA has to identify the aspect polarities
f both battery and performance even though the aspect term of
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performance does not appear in the text. In this paper, we target
both ATSA and ACSA.

The state-of-the-art techniques for aspect-level sentiment
analysis have been built on a variety of DNN models [2–4].
Compared with previous learning models [5,6], the DNN models
can effectively improve classification accuracy by automatically
learning multiple levels of representation from data. However,
their efficacy depends heavily on large quantities of accurately
labeled training data. Unfortunately, high-quality labeled data
usually require expensive manual work, thus may not be readily
available in real scenarios. To address this limitation, this pa-
per presents a novel solution based on the recently proposed
paradigm of Gradual Machine Learning (GML) [7,8], which can
enable accurate machine labeling without the requirement for
manual labeling effort. Inspired by the gradual nature of human
learning, which is adept at solving problems with increasing
hardness, GML begins with some easy instances in a task, which
can be automatically labeled by the machine with high accu-
racy, and then gradually reasons about the labels of the more
challenging instances based on the observations provided by the
labeled easier instances. The general paradigm of GML consists
of three steps: easy instance labeling, feature extraction and
influence modeling, and finally gradual inference. GML has been
successfully applied to the problem of entity resolution [8]. It has
been empirically shown that GML performs considerably better
than its unsupervised alternatives; its performance is even highly

competitive compared with the state-of-the-art DNN solution.
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able 1
running example from laptop reviews.
ri sij Text

r1
s11 I like the battery that can last long time.
s12 However, the keyboard sits a little far back for me.

r2
s21 The laptop has a long battery life.
s22 It also can run my games smoothly.

As pointed out in [7,8], even though there already exist many
earning paradigms, including transfer learning [9], lifelong learn-
ng [10], curriculum learning [11], and self-training learning [12]
o name a few, GML is fundamentally distinct from them due to
ts following two properties:

• Distribution misalignment between easy and hard instances
in a task. The scenario of gradual machine learning does not
satisfy the i.i.d (independent and identically distributed) as-
sumption underlying most existing machine learning mod-
els. In GML, the labeled easy instances are not representative
of the unlabeled hard instances. The distribution misalign-
ment between the labeled and unlabeled instances renders
most existing learning models unfit for gradual machine
learning.
• Gradual learning by small stages in a task. Gradual machine

learning proceeds in small stages. At each stage, it typically
labels only one instance based on the evidential certainty
provided by the labeled easier instances. The process of iter-
ative labeling can be performed in an unsupervised manner
without any human intervention.

We summarize the major contributions of this paper as fol-
ows:

• We propose a novel approach for aspect-level sentiment
analysis based on the paradigm of gradual machine learn-
ing. It can achieve accurate machine labeling without the
requirement for manual labeling effort.
• We present a package solution to enable effective gradual

learning on ALSA, which include the techniques for easy
instance labeling, feature extraction and influence modeling,
and scalable gradual inference.
• We have empirically evaluated the performance of the pro-

posed solution by a comparative study on benchmark data.
Our extensive experiments have shown that its performance
is considerably better than its unsupervised alternatives,
and also highly competitive compared with the state-of-
the-art supervised DNN models. Moreover, the GML solu-
tion is robust in that its performance is, to a large extent,
insensitive to algorithmic parameters.

The rest of this paper is organized as follows: Section 2 re-
iews related work. Section 3 defines the task of ALSA and pro-
ides a paradigm overview of gradual machine learning. Section 4
escribes the technical solution for ALSA. Section 5 presents
he scalable solution of gradual inference. Section 6 empirically
valuates the performance of the proposed solution. Finally, we
onclude this paper with Section 7.

. Related work

In this section, we first review the existing machine learning
aradigms, and then discuss the existing work on sentiment
nalysis with the focus on aspect-level sentiment analysis.
2

2.1. Machine learning paradigms

We first proposed the paradigm of gradual machine learning
and applied it to the task of entity resolution in [7,8]. There exist
many other machine learning paradigms proposed for a wide
variety of classification tasks. Here we will briefly review those
closely related to GML and discuss their difference from GML.

Traditional machine learning algorithms make predictions on
the future data using the statistical models that are trained on
previously collected labeled or unlabeled training data [13–16].
In many real scenarios, the labeled data may be too few to build
a good classifier. Semi-supervised learning [17,18] addresses this
problem by making use of a large amount of unlabeled data and
a small amount of labeled data. Nevertheless, the efficacy of both
supervised and semi-supervised learning paradigms depends on
the i.i.d assumption. Therefore, they cannot be applied to the
scenario of gradual machine learning.

In contrast, transfer learning [9], allows the distributions of
the data used in training and testing to be different. It focused
on using the labeled training data in a domain to help learning
in another target domain. The other learning techniques closely
related to transfer learning include lifelong learning [10] and
multi-task learning [19]. Lifelong learning is similar to transfer
learning in that it also focused on leveraging the experience
gained on the past tasks for the current task. However, different
from transfer learning, it usually assumes that the current task
has good training data, and aims to further improve the learning
using both the target domain training data and the knowledge
gained in past learning. Multi-task learning instead tries to learn
multiple tasks simultaneously even when they are different. A
typical approach for multi-task learning is to uncover the pivot
features shared among multiple tasks. However, all these learning
paradigms cannot be applied to the scenario of gradual machine
learning. Firstly, focusing on unsupervised learning within a task,
gradual machine learning does not enjoy the access to good
labeled training data or a well-trained classifier to kick-start
learning. Secondly, the existing techniques transfer instances or
knowledge between tasks in a batch manner. As a result, they do
not support gradual learning by small stages within a task.

The other related machine learning paradigms include cur-
riculum learning (CL) [11] and self-paced learning (SPL) [20].
Both of them are, to some extent, similar to gradual machine
learning in that they were also inspired by the learning principle
underlying the cognitive process in humans, which generally start
with learning easier aspects of a task, and then gradually takes
more complex examples into consideration. However, both of
them depend on a curriculum, which is a sequence of training
samples essentially corresponding to a list of samples ranked in
ascending order of learning difficulty. A major disparity between
them lies in the derivation of the curriculum. In CL, the curricu-
lum is assumed to be given by an oracle beforehand, and remains
fixed thereafter. In SPL, the curriculum is instead dynamically
generated by the learner itself, according to what the learner
has already learned. Based on the traditional learning models,
both CL and SPL depend on the i.i.d assumption and require
good-coverage training examples for their efficacy. However, the
scenario of gradual machine learning does not satisfy the i.i.d
assumption. GML actually aims to eliminate the dependency on
good-coverage training data.

Online learning [21] and incremental learning [22] have also
been proposed for the scenarios where training data only be-
comes available gradually over time or its size is out of system
memory limit. Built on the traditional learning models, both of
them depend on high-quality training data for their efficacy.

Therefore, they cannot be applied for gradual learning either.
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.2. Sentiment analysis

In general, sentiment analysis involves various tasks, such
s polarity classification, subjectivity or objectivity identifica-
ion, and multimodal fusion [23]. In this paper, we focus on
he essential task of polarity classification. Sentiment analysis at
ifferent granularity levels, including document, sentence, and
spect, has been extensively studied in the literature [24]. At
he document (resp. sentence) level, its goal is to detect the
olarity of the entire document (resp. sentence) without regard
o the mentioned aspects. The state-of-the-art solutions have
een built based on deep neural networks (e.g. CNN and RNN),
hich include Character-level Convolutional Networks [25], Deep
yramid Convolutional Neural Networks [26] and Linguistically
egularized LSTM [27]. There also exist some semi-supervised
pproaches for the particular problem of social data analysis [28],
or which the acquisition of labeled data often requires a costly
rocess that involves skilled experts whereas the acquisition of
nlabeled ones is relatively inexpensive. Specifically, Silva [29]
roposed a semi-supervised learning framework that can effec-
ively leverage the unsupervised information captured by a sim-
larity matrix, which is constructed based on unlabeled data, in
lassifier training. Hussain [30] also presented a combined model
f random projection and support vector machine. Unfortunately,
ll these proposals cannot be directly applied to aspect-level sen-
iment analysis because a sentence may hold different opinions
n different aspects. Moreover, their efficacy depends on the
vailability of large quantities of labeled training data.
Since deep neural networks can automatically learn high-

uality features or representations, most recent work attempted
o adapt such models for aspect-level sentiment analysis. We
iscuss the work for ATSA and ACSA separately. For the ATSA
ask, Dong [31] proposed an Adaptive Recursive Neural Network
AdaRNN) that employed a novel multi-compositionality layer to
ropagate the sentiments of words toward the target. Noticing
hat the models based on recursive neural network heavily rely
n external syntactic parser, which may result in inferior perfor-
ance, many researchers subsequently focused on recurrent neu-

al networks. Tang [32] proposed a target-dependent LSTM (TD-
STM) model to capture the connection between target words
nd their contexts. The alternative solutions include the memory
etworks and the convolutional neural networks. Wang [33] pro-
osed a Target-sensitive Memory Network that aimed to capture
he sentiment interaction between targets and contexts. Li [34]
resented a Transformation Network that employed a CNN layer
o extract salient features from the transformed word represen-
ations originated from a bi-directional RNN layer. Due to the
reat success of attention mechanism in image recognition [35],
peech recognition [36], machine translation [37,38] and question
nswering [39], many attention-based models have also been
roposed for ATSA. These models, including Hierarchical Atten-
ion Network [40], Segmentation Attention Network [41], Interac-
ive Attention Networks [42], Recurrent Attention Network [43],
ttention-over-Attention Neural Networks [44], Effective Atten-
ion Modeling [45], Content Attention Model [46], Multi-grained
ttention Network [47] and Sentic LSTM [48], employed different
ttention mechanisms to output the aspect-specific sentiment
eatures. It is noteworthy that Sentic LSTM [48] specifically fo-
used on leveraging commonsense knowledge in the deep neural
equential model. More recently, some researchers investigated
ow to leverage the BERT model for ATSA. Song [49] proposed
n Attentional Encoder Network (AEN) which employed the pre-
rained BERT and the attention-based encoders. Zeng [50] pre-
ented a Local Context Focus (LCF) mechanism based on Multi-
ead Self-Attention (MHSA), and adopted a BERT-shared layer in
ts LCF design.
3

Table 2
Frequently used notations.
Notation Description

rj A review
sk A sentence
al An aspect category or aspect term
ti = (rj, sk, al) An aspect unit
T = {ti} A set of aspect units
vi A boolean variable indicating the polarity of the aspect unit ti
V = {vi} A set of aspect polarity variables

In comparison, there exist fewer proposals for ACSA because
implicit aspects make polarity detection more challenging. Ruder
[4] proposed a hierarchical bidirectional LSTM for ACSA by mod-
eling the inter-dependencies of sentences in a review. Wang [3]
presented an attention-based LSTM that employed an aspect-to-
sentence attention mechanism to concentrate on the key part of
a sentence given an aspect. Xue [2] introduced a convolutional
neural network augmented with gating mechanisms, which was
empirically shown to be more accurate and efficient compared
with its previous alternatives. It is worthy to point out that
the DNN models proposed for ACSA can also be used for ATSA,
but the models proposed for ATSA are usually not applicable
to ACSA because they employ specific mechanisms to model an
explicit aspect term along with its relative context. However, the
efficacy of the existing DNN-based approaches for ATSA and ACSA
depends heavily on good-coverage training data, which may not
be readily available in real scenarios.

There also exist some work for semi-supervised aspect-level
sentiment classification. Cheng [51] employed the Variational
Autoencoder based on Transformer to effectively improve the
performance of supervised DNN models for ATSA. Wang [52,53]
presented a joint framework, SenHint, which can seamlessly inte-
grate the output of deep neural networks and the implications of
linguistic hints in a unified model of factor graph. Similar to GML,
SenHint also identifies easy instances, and leverages the extracted
features to improve the accuracy of polarity reasoning. However,
SenHint labels all the hard instances simultaneously in a single
iteration, and its efficacy depends heavily on the output of DNN
models. In comparison, GML gradually labels hard instances in
small stages based on the evidential certainty provided by labeled
easier instances. Typically, GML runs in many iterations, and in
each iteration, it labels one and only one hard instance. Moreover,
the GML solution proposed in this paper does not require any
manually labeled data.

Finally, it is worthy to point out that word polarity disam-
biguation is an important problem in sentiment analysis, whose
main challenge is to resolve the polarity of the sentiment-
ambiguous words in different contexts. Recently, Xia [54] pro-
posed a Bayesian model for opinion-level features to solve the
problem of polarity disambiguation. Rafeek [55] presented a
new approach of Bayesian Network Based Contextual Polarity
Disambiguation (BbNCPD) to resolve the polarities of context-
dependent opinion words. Their empirical studies have shown
that these solutions can effectively improve the accuracy of po-
larity detection.

3. Preliminaries

In this section, we first define the task of aspect-level senti-
ment analysis, and then provide a paradigm overview of gradual

machine learning.
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Fig. 1. Learning paradigm overview.
3.1. Task statement

For presentation simplicity, we have summarized the fre-
quently used notations in Table 2. Formally, we formulate the task
of aspect-level sentiment analysis as follows:

Definition 1 (Aspect-level Sentiment Analysis). Let ti = (rj, sk, al) be
an aspect unit, where rj denotes a review, sk denotes a sentence
in the review rj, and al denotes an aspect associated with the
sentence sk. Note that the aspect al can be an aspect category
or aspect term, and a sentence may express opinions toward
multiple aspects. Given a corpus of reviews, R, the goal of the task
is to predict the sentiment polarity of each aspect unit ti in R.

In this paper, we suppose that an aspect polarity is either
positive or negative.

3.2. Paradigm overview

As presented in [7,8], the paradigm of gradual machine learn-
ing, which has been shown in Fig. 1, consists of the following
three steps:

• Easy Instance Labeling. Given a classification task, it is
usually very challenging to accurately label all the instances
in the task without good-coverage training examples. How-
ever, the work can become much easier if we only need to
automatically label some easy instances in the task. In real
scenarios, easy instance labeling can be performed based
on the simple user-specified rules or the existing unsu-
pervised learning techniques. For instance, in unsupervised
clustering, an instance close to a cluster center in the fea-
ture space can usually be considered as an easy instance,
because it has only a remote chance to be misclassified.
Gradual machine learning begins with the label observations
of easy instances. Therefore, high accuracy of automatic easy
instance labeling is critical for GML’s ultimate performance.
• Feature Extraction and Influence Modeling. In GML, fea-

ture serves as the medium to convey the knowledge ob-
tained from labeled easy instances to unlabeled harder ones.
4

This step extracts the common features shared by the la-
beled and unlabeled instances. To facilitate effective knowl-
edge conveyance, it is desirable that a wide variety of fea-
tures are extracted to capture as much information as possi-
ble. For each extracted feature, this step also needs to model
its influence over the labels of its relevant instances.
• Gradual Inference. This step gradually labels the instances

with increasing hardness in a task. Since the scenario of
gradual learning does not satisfy the i.i.d assumption, grad-
ual learning is fulfilled from the perspective of evidential
certainty. As shown in Fig. 1, it constructs a factor graph,
which consists of the labeled and unlabeled instances and
their common features. Gradual learning is conducted over
the factor graph by iterative inference. At each iteration,
it chooses to label the unlabeled instance with the highest
degree of evidential certainty. The iteration is repeatedly in-
voked until all the instances in a task are labeled. In gradual
inference, a newly labeled instance at the current iteration
would serve as an evidence observation in the following
iterations.
Formally, we denote the model of factor graph correspond-
ing to a classification workload by G. Suppose that G consists
of a set of evidence variables Λ, whose labels are known,
a set of inference variables VI, whose labels are unknown,
and a group of factor functions of variables to indicate
the probabilistic relations among the variables, denoted by
Fθ (Vi) : Vi → Pθ (Vi), in which Vi denotes a set of variables
and Vi ∈ PowerSet(Λ ∪ VI).
In each iteration, GML generally chooses to label the infer-
ence variable in VI with the highest degree of evidential
certainty. Suppose that the total number of label types,
denoted by {T1, T2, . . . , Tt}, is t . Given an inference variable
v, GML measures its evidential certainty by the inverse of
entropy as follows

E(v) =
1

H(v)
=

1
−

∑
1≤i≤t Pi(v) · log2Pi(v)

, (1)

in which E(v) and H(v) denote the evidential certainty and
entropy of v respectively, and Pi(v) denotes the inferred
probability of v having the label of Ti.
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. Solution for ALSA

This section presents the solution of gradual machine learning
or ALSA, which include the corresponding techniques for the
hree steps laid out in Section 3.2.

.1. Easy instance labeling

The existing lexicon-based approaches [56] essentially rea-
on about polarity by summing up the polarity scores of all
he sentiment words in a sentence. The score of a sentiment
ord indicates its intensity of sentiment, which is supposed
o increase with the absolute value of score. Since a negation
ord can effectively reverse the polarity of a sentiment word,
hey usually perform negation detection for each sentiment word
y examining whether there is any negation in its neighboring
ords [57].
Unfortunately, the lexicon-based approaches are prone to

aking mistakes under some ambiguous circumstances. Firstly,
he presence of contrast (e.g. but and although), hypothetical
e.g. if ) or condition (e.g. unless) connectives could significantly
omplicate polarity detection. For instance, the sentence, ‘‘would
e a very nice laptop if the mousepad worked properly’’, contains
nly the positive sentiment words ‘‘nice’’ and ‘‘properly’’, but
t holds negative attitude due to the presence of the hypo-
hetical connective ‘‘if’’. Secondly, the negation words involving
ong-distance dependency could also make polarity detection
hallenging. For instance, in the sentence, ‘‘I don’t really think
he laptop has a good battery life’’, the negation word ‘‘don’t’’
everses the polarity, but it is far away from the sentiment word
‘good’’. Finally, a sentence may contain multiple sentiment words
hat hold conflicting polarities; in this case, its true polarity is not
asily detectable based on sentiment word scoring.
Therefore, as originally proposed in [53], we identify easy

nstances by excluding the aforementioned ambiguous circum-
tances as follows:

efinition 2 (Easy Instance). We consider an aspect polarity,
i = (rj, sk, al), as an easy instance if and only if the sentence
xpressing opinions about the aspect, sk, simultaneously satisfies
he following three conditions:

• It contains at least one sentiment word, but does not simul-
taneously contain any sentiment word holding a conflicting
polarity;
• It does not contain any contrast, hypothetical or condition

connective;
• It does not contain any negation word involving long-

distance dependency.

The polarity of an easy instance is simply determined by the
olarity of its sentiment words. Moreover, a negation word is
upposed to involve long-distance dependency if and only if it is
ot in the 3-gram preceding any sentiment word. We illustrate
he difference between the easy and challenging instances by
xample 1.

xample 1 (Easy Instances). In a phone review, the sentence, ‘‘the
creen is not good for carrying around in your bare hands’’, which
xpresses opinion about ‘‘screen’’, is an easy instance because
he sentiment word ‘‘good’’ associated with the local negation
ue ‘‘not’’ strongly indicates the negative sentiment. In contrast,
he sentence, ‘‘I don’t know why anyone would want to write a
reat review about this battery’’, which expresses opinion about
‘battery’’, is not an easy instance. Even though it contains the sen-
iment word ‘‘great’’, it also includes the negation word ‘‘don’t’’
nvolving long-distance dependency. Similarly, the sentence, ‘‘I
5

like this laptop, the only problem is that it cannot last long time’’,
is not an easy instance because it contains both positive and
negative words, i.e. ‘‘like’’ and ‘‘problem’’ respectively.

4.2. Feature extraction and influence modeling

We extract two types of features for influence modeling: word
feature and relational feature.

Word Feature. Sentiment polarity is usually determined by senti-
ment words. Therefore, we extract sentiment words, which have
been specified in the open-source lexicons, from sentences and
consider them as the features of aspect polarities. To capture
more information shared among aspect instances, besides the
single sentiment words, we also extract k-grams (k ≥ 2) as word
features. Since word context (e.g. negation and subjunctive) can
effectively alter the polarity of an opinion word, we thus perform
context detection for each word feature by examining whether
there is any negation or subjunctive word in its neighborhood.

In ALSA, a sentence may express opinions toward multiple
aspects. Therefore, we need to associate each sentiment fea-
ture with its target aspect. For this purpose, we first use the
technique proposed in [58] to extract opinion phrases. It lever-
ages the patterns based on dependency relations [59] for phrase
extraction. The typical patterns include: (1) adjective modifier:
amod(N, A) → ⟨N, A⟩ (e.g. in the sentence ‘‘great camera’’, we
have amod(camera, great) → ⟨camera, great⟩); (2) joint clausal
complement and nominal subject: acomp(N, A) + nsubj(V ,N)→
N, A⟩(e.g. in the sentence ‘‘the camera looks beautiful’’, we have
acomp(camera, beautiful) + nsubj(looks, camera) →

⟨camera, beautiful⟩); (3) joint direct object and nominal subject:
dobj(V ,N) + nsubj(V ,N ′) → ⟨N, V ⟩(e.g. in the sentence ‘‘i like
this keyboard’’, we have dobj(like, keyboard) + nsubj(like, I) →
⟨keyboard, like⟩). Please refer to [58] for more details.

Next, we associate sentiment features with their target aspects
based on the extracted opinion phrases. In the case of ATSA, it is
easy to correlate a opinion word (corresponding to a sentiment
feature) in a sentence with its target aspect because the aspect
term explicitly appears in the text. In the case of ACSA, we assign
an opinion word to an aspect if and only if either its opinion target
or the opinion word itself is close to the aspect term in the vector
space (namely, their similarity exceeds a threshold (e.g. 0.5 in our
implementation)).

Relational Feature. Modeling sentences independently, the ex-
isting DNN models for aspect-level sentiment analysis have very
limited capability in capturing the contextual information at sen-
tence level. However, the sentences in a review build upon each
other. There often exist some discourse relations between clauses
or sentences, which can provide valuable hints for polarity rea-
soning. Specifically, it can be observed that two sentences con-
nected with a shift word usually have opposite polarities. In con-
trast, two neighboring sentences without any shift word between
them usually have similar polarities. In the running example
shown in Table 1, the polarities of s11 and s12 are opposite because
they are connected by the shift word of ‘‘but’’, while the polarities
of s21 and s22 are similar due to the absence of any shift word
between them.

Therefore, as originally proposed in [53], we use the rules
to extract the similar or opposite relation between two aspect
units based on their sentence context. Given two aspect units
ti = {ri, si, ai} and tj = {rj, sj, aj} that are opinioned in the same
review (namely ri = rj), the rules for polarity relation extraction
are specified as follows:

1. If the sentences si and sj are identical (si = sj) or adjacent
and neither of them contains any shift word, ti and tj are
supposed to hold similar polarities;
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2. If two adjacent sentences si and sj are connected by a shift
word and neither of them contains any inner-sentence shift
word, ti and tj are supposed to hold opposite polarities;

3. If the sentences si and sj are identical and the opinion
clauses associated with them are connected by an inner-
sentence shift word, ti and tj are supposed to hold opposite
polarities.

Given an ATSA task, it is easy to correlate an opinion clause
with its target aspect because the aspect term explicitly appears
in the text. Therefore, the condition specified in the 3rd rule can
be easily checked in the scenario of ATSA. The scenario of ACSA is
instead more challenging. Our solution first uses the dependency-
based parse tree to extract all the opinion phrases, and then
associates an opinion clause with a specific aspect if either its
opinion target or opinion word is close to the aspect in the vector
space.

4.3. Gradual inference

As usual, we construct a factor graph, G, in which the labeled
easy instances are represented by the evidence variables, the unla-
beled hard instances by the inference variables, and the features by
the factors. The value of each variable represents its correspond-
ing polarity. An evidence variable has the constant value of 0 or 1,
which indicate the polarity of negative and positive respectively.
The values of the evidence variables remain unchanged during
the inference process. The values of the inference variables should
instead be inferred based on G. The factor graph constructed for
the running example has been shown in Fig. 2.

Gradual machine learning is attained by iterative factor graph
inference on G. In G, we define the probability distribution over
its variables V by

Pw(V ) =
1
Zw

∏
v∈V

∏
f∈Fv

φf (v)
∏
f ′∈F ′

φf ′ (vi, vj), (2)

where Fv denotes the set of word features associated with the
variable v, F ′ denotes the set of relational features, φf (v) denotes
he factor associated with v and f , and φf ′ (vi, vj) denotes the
factor associated with the relational feature f ′. In Eq. (2), the
factor of a word feature f is defined by

f (v) =
{
1 v = 0;
ewf v = 1; (3)

where v denotes a variable having the feature f , and wf denotes
he weight of f . Similarly, the factor of a relational feature f ′ is
defined by

φf ′ (vi, vj) =
{
ewf ′ if vi = vj;

1 otherwise; (4)

where vi and vj denote the two variables sharing the feature
f ′, and wf ′ denotes the weight of f ′. Note that the weight of a
word factor can be positive or negative, while the weight of a
similar relational factor is positive and the weight of an opposite
relational factor is negative. In our implementation, the weights
of all the similar relational factors are set to be the same; the
weights of all the opposite relational factors are also set to be the
same.

As in [7], given a factor graph with some labeled evidence
variables, we reason about the factor weights by minimizing the
negative log marginal likelihood of

ŵ = arg min
w
−log

∑
VI

Pw(Λ, VI ), (5)

where Λ denotes the observed labels of evidence variables and
V denotes the set of inference variables. The objective function
I

6

Algorithm 1: Scalable Gradual Inference
1 while there exists any unlabeled variable in G do
2 V ′ ← all the unlabeled variables in G;
3 for v ∈ V ′ do
4 Measure the evidential support of v in G;
5 Select top-m unlabeled variables with the most

evidential support (denoted by Vm) ;
6 for v ∈ Vm do
7 Approximately rank the entropy of v in Vm;
8 Select top-k most promising variables in terms of

entropy in Vm (denoted by Vk) ;
9 for v ∈ Vk do

10 Compute the probability of v in G by factor graph
inference over a subgraph of G;

11 Label the variable with the minimal entropy in Vk;

effectively learns the factor weights most consistent with the
label observations of evidence variables. In our implementation,
we have used the Numbskull library1 to optimize this objective
function by interleaving stochastic gradient descent steps with
Gibbs sampling ones, similar to contrastive divergence.

As usual, gradual inference proceeds in small stages. At each
stage, it chooses to label the unlabeled variable with the highest
degree of evidential certainty in G. The iteration is repeatedly
invoked until all the inference variables are labeled. In grad-
ual inference, evidential certainty is measured by the inverse of
entropy. In the case of ALSA, entropy is formally defined by

H(v) = −(P(v) · log2P(v)+ (1− P(v)) · log2(1− P(v))) (6)

n which H(v) denotes the entropy of a variable v, and P(v)
enotes the inferred probability of v.
In gradual inference, only the inference variables receiving

onsiderable evidential support from labeled instances need to
e considered for labeling. In the next section, we will present a
calable solution for gradual inference on ALSA.

. Scalable gradual inference

We have built the scalable solution based on the framework
roposed in [8], which consists of three steps, measurement
f evidential support, approximate ranking of entropy and con-
truction of inference subgraph. The process of scalable gradual
nference is sketched in Algorithm 1. Given a factor graph G, it
irst selects the top-m unlabeled variables with the most evi-
ential support in G as the candidates for probability inference.
o reduce the invocation frequency of factor graph inference, it
hen approximates entropy estimation by an efficient algorithm
n the m candidates and selects only the top-k most promising
ariables among them for factor graph inference. Finally, it infers
he probabilities of the chosen k variables in G. For each variable,
ts probability is not inferred over the entire graph of G, but over
potentially much smaller subgraph.

.1. Measurement of evidential support

Here we first introduce the Dempster–Shafer (D–S) theory [60],
he classical framework for evidential support estimation, and
hen describe how to leverage it for evidential support measure-
ent.

1 https://github.com/HazyResearch/numbskull.

https://github.com/HazyResearch/numbskull
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Fig. 2. The factor graph constructed for the running example.
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The D–S theory, also known as evidence theory, is a general
ramework for reasoning with uncertainty. It allows one to com-
ine the beliefs from different evidence sources and arrive at a
egree of belief that takes into account all the available evidences.
he basic concepts involved in the D–S theory are described as
ollows:

• Propositions. Denoted by X , it represents all possible states
of a situation under consideration.
• Power set of propositions. Denoted by 2X , it includes all of

the subsets of the propositions.
• Belief function. Denoted bym(·), it assigns a degree of belief

(or mass) to each element E of the power set 2X . The masses
of elements satisfy

∑
E∈2X m(E) = 1 and m(∅) = 0. In

case that only singleton propositions are assigned degrees
of belief, a belief function reduces to a classical probability
function.
• Belief combining rules. It aims to combine degrees of belief

indicated by independent evidence sources with various
fusion operators. The popular fusion operator is Dempster’s
rule of combination, which derives common shared belief
between multiple sources and ignores all the conflicting
(non-shared) belief through a normalization factor.

Given an inference variable v, the purpose is to estimate its
verall evidential support in terms of labeling. It can be observed
hat (1) various features (e.g. word features and relational fea-
ures) can be considered as different evidence sources providing
ints for labeling; (2) each feature has some inherent uncertainty
hen indicating label status.
We first define two propositions: ‘‘label the instance’’, denoted

y L, and ‘‘unlabel the instance’’, denoted by U . With X = {L,U},
he power set of X can be represented by 2X

= {∅, L,U, X}. Then,
e define different belief functions for various evidences (namely
ord features and relational features). Given an inference vari-
ble v and its word feature f , we estimate the evidential support
hat v receives from f by the belief function

f (E) =

{(1− df ) ·max{P(f ), 1− P(f )} E = {L},
(1− df ) ·min{P(f ), 1− P(f )} E = {U},
df E = {L,U},

(7)

here df denotes the degree of uncertainty of f , and P(f ) denotes
he proportion of positive instances among all labeled instances
aving the feature f . According to Eq. (7), the belief assigned to
he element of {L} increases as the value of P(f ) becomes more
xtreme (i.e. close to 0 or 1). The underlying intuition is that the
ore extreme the value of P(f ) is, the more evidential support

he element of {L} should receive from the feature f .
Similarly, given an inference variable v and its relational fea-

ure f ′, we estimate the evidential support that v receives from
′ by the belief function

f ′ (E) =

{(1− df ′ ) · R(f ′) E = {L},
(1− df ′ ) · (1− R(f ′)) E = {U},
df ′ E = {L,U},

(8)

here df ′ denotes the degree of uncertainty of f ′, and R(f ′)
enotes the accuracy of the relation f ′. In Eq. (8), R(f ′) can be
7

onsidered as the statistical accuracy of the extracted relations,
hich can be estimated based on labeled instances; the evidential
upport that the element of {L} receives from f ′ thus increases
ith the estimated accuracy.
We are now ready to describe how to measure the aggregate

vidential support provided by multiple features. Suppose that an
nference variable v has iword features, {f1, . . ., fi}, and j relational
eatures, {f ′1 , . . ., f ′j }. Given the element of E = {L}, we estimate
its aggregate evident support by combining the estimated beliefs
as follows

m(E) = mf1 (E)⊕ · · · ⊕mfi (E)⊕mf ′1
(E)⊕ · · · ⊕mf ′j

(E), (9)

where m(E) denotes the total amount of evidential support that
v receives, and the combination is calculated from the two sets
of mass functions, mf1 (E) and mf2 (E), as follows

mf1 (E)⊕mf2 (E) =
1

1− K

∑
E′∩E′′=E

mf1 (E
′) ·mf2 (E

′′), (10)

where E ′ and E ′′ denote the elements of the power set, and

K =
∑

E′∩E′′=∅

mf1 (E
′) ·mf2 (E

′′), (11)

which is a measure of the amount of conflict between E ′ and E ′′.
Note that the degree of uncertainty, denoted by df and df ′

in Eqs. (7) and (8), indicates how much impact a feature has
on the whole degree of belief in terms of evidential support
measurement. The lower the value, the greater the impact. It
can be observed that relational features usually provide more
reliable information than word features. Therefore, in practical
implementation, we suggest that df ′ is set to be smaller than
df (e.g., df = 0.4 and df ′ = 0.1). Our empirical evaluation in
Section 6.4 has shown that the performance of gradual machine
learning is, to a large extent, insensitive to the parameter setting
of df and df ′ .

On time complexity, each iteration takes O(n × nf ) time, in
which n denotes the total number of instances in a task, and
nf denotes the maximum number of extracted features of an
inatance. Therefore, the time complexity of evidential support
measurement can be represented by O(n2

× nf ).

5.2. Approximate ranking of entropy

Since more evidential conflict means more status uncertainty,
we approximate the entropy ranking of inference variables by
measuring their evidential conflict. Specifically, we define two
propositions: ‘‘label it as positive’’, denoted by L+, and ‘‘label it
as negative’’, denoted by L−. Given an inference variable v and its
word feature f , we approximate v’s evidential certainty w.r.t f
with the belief function

m∗f (E) =

⎧⎪⎨⎪⎩
(1− d∗f ) · P(f ) E = {L+},
(1− d∗f ) · (1− P(f )) E = {L−},
∗ + −

(12)

df E = {L , L },
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here d∗f denotes the degree of uncertainty of f , and P(f ) de-
notes the proportion of positive instances among all the labeled
instances having the feature f .

Similarly, given an inference variable v and its relational fea-
ure f ′, we approximate v’s evidential certainty w.r.t f ′ with the
elief function

∗

f ′ (E) =

⎧⎪⎨⎪⎩
(1− d∗f ′ ) · P(f

′) E = {L+},
(1− d∗f ′ ) · (1− P(f ′)) E = {L−},
d∗f ′ E = {L+, L−},

(13)

here d∗f ′ denotes the degree of uncertainty of f ′, and P(f ′)
enotes the probability of v being positive if only the evidence
′ is considered for labeling v. If the labeled variable on the other
ide of the relation f ′ is positive, we set P(f ′) = e

wf ′

1+e
wf ′ , in which

f ′ denotes the weight of f ′; otherwise (i.e., it is negative), we set
(f ′) = 1

1+e
wf ′ .

Finally, we measure the amount of conflict between the mul-
tiple pieces of evidence using the generalized expression of K
s specified in Eq. (11). Similar to the case of evidential support
easurement, we suggest that d∗f ′ is set to be a lower value than
∗

f . Our empirical evaluation in Section 6.4 has shown that the
performance of gradual machine learning is, to a large extent,
insensitive to the parameter setting of d∗f and d∗f ′ .

On time complexity, each iteration takes O(nf × m) time, in
hich nf denotes the maximum number of extracted features of
n inatance and m denotes the number of candidate variables
elected for approximate entropy estimation as specified in Algo-
ithm 1. Therefore, the time complexity of approximate entropy
stimation can be represented by O(n× nf ×m).

.3. Construction of inference subgraph

It has been empirically shown [61] that given a variable v in
, its probability inference can be effectively approximated by
onsidering the subgraph consisting of v and its r-hop neigh-
oring variables, and even with a small value of r (e.g. 2 and
), the approximation can be sufficiently accurate in many real
cenarios. Therefore, given a target inference variable v in G, we
xtract all its 2-hop neighbors reachable by the relational factors
nd include them in the subgraph. For each word feature of v,
ll the labeled and unlabeled instances sharing the feature with v

re also included in the constructed subgraph because potentially,
heir labels can significantly influence the label of v.

On time complexity, each iteration of subgraph construction
akes O(nv × nf × k) time, in which nv denotes the maximum
number of instances in the subgraph, nf denotes the maximum
umber of extracted features of an inatance and k denotes the

number of candidate variables selected for factor graph inference
as specified in Algorithm 1. Therefore, the time complexity of
inference subgraph construction can be represented by O(n×nv×

f × k).

. Empirical evaluation

In this section, we empirically evaluate the performance of the
roposed solution by a comparative study. We have compared
ML with the state-of-the-art techniques proposed for both ACSA
nd ATSA. Note that the DNN models proposed for ACSA can also
e used for ATSA, but the models proposed for ATSA are usually
ot applicable to ACSA because they employ specific mechanisms
o model an explicit aspect-term along with its relative context.

For the ACSA task, the compared techniques include:

• LEX-SYN [62]. It is an unsupervised approach built on lexi-
cons and syntactic dependency analysis;
8

• VADER [57]. It is a rule-based method proposed for
sentence-level sentiment analysis. We have adapted it for
the task of ALSA. Given a sentence with multiple aspects,
the solution identifies the sentiment polarity of an aspect by
analyzing its opinioned clause, whose extraction has been
explained in Section 4.2.
• H-LSTM [4]. It is an enhanced DNN model. It models the

inter-dependencies of sentences in a review using a hier-
archical bidirectional LSTM;
• AT-LSTM [3]. Referring to the Attention-based LSTM, it em-

ploys an attention mechanism to concentrate on the key
parts of a sentence given an aspect, where the aspect em-
beddings are used to determine the attention weights;
• ATAE-LSTM [3]. Referring to the Attention-based LSTM with

Aspect Embedding, it is supposed to be an improvement
over AT-LSTM. It extends AT-LSTM by appending the input
aspect embedding to each word’s input vector;
• GCAE [2]. It uses convolutional neural networks and gating

mechanisms to predict the sentiment polarity of a given
aspect. Compared with the LSTM and attention mechanisms,
it can be more accurate and efficient.

For the ATSA task, besides LEX-SYN, VADER, AT-LSTM, ATAE-
LSTM and GCAE, the compared techniques also include:

• IAN [42]. Referring to the interactive attention network, it
models targets and contexts separately and learn their own
representations via interactive learning. By modeling targets
and contexts separately, it can pay close attention to the
important parts in the target and context;
• RAM [43]. It is a multiple-attention network where the

features from multiple attentions are non-linearly combined
with a recurrent neural network. It can effectively capture
sentiment features separated by a long distance, and is
usually more robust against irrelevant information;
• AOA [44]. Referring to the attention-over-attention network,

it models aspect and sentence in a joint way and benefits
from modeling the interaction among word-pairs between
sentences and targets;
• TNet [34]. It is a target-specific transformation network that

employs a CNN layer to extract salient features from the
transformed word representations originated from a RNN
layer. It avoids using attention for feature extraction so as
to alleviate the attended noise;
• ASVAET [51]. It is a semi-supervised model, which can in-

duce the underlying sentiment prediction for unlabeled data
by disentangling the latent representation into the aspect-
specific sentiment and the lexical context. Since the model is
classifier-agnostic, it can be built upon various DNN models
(e.g. IAN, RAM, AOA, TNet). In our empirical evaluation, we
only report the results of ASVAET(IAN), which integrates IAN
into ASVAET; the results on other DNNs are quite similar,
thus omitted in the paper.

Besides the aforementioned approaches, we have also com-
pared GML with SenHint [53]. The original SenHint depends on
the output of DNN models. For fair comparison, we have im-
plemented a trimmed version of SenHint without requiring DNN
outputs. The trimmed SenHint first identifies some easy instances
using the same technique proposed for GML, and then leverages
the extracted shared features for polarity reasoning. Note that
unlike GML, SenHint labels all the hard instances simultaneously
in a single iteration. The rest of this section is organized as
follows: Section 6.1 describes the experimental setup. Section 6.2
presents the comparative evaluation results. Section 6.3 evaluates
the performance of easy instance labeling. Section 6.4 evaluates
the performance sensitivity of the proposed solution w.r.t various
parameters. Finally, Section 6.5 evaluates the scalability of the
proposed solution.
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able 3
ata statistics of benchmark datasets.
Data Language #N(ACSA) #N(ATSA)

Train Test Train Test

PHO16 Chinese 1333 529 — —
CAM16 Chinese 1259 481 — —
LAP16 English 2715 751 1702 479
RES16 English 2134 693 1711 592
LAP15 English 1864 868 1168 533
RES15 English 1410 725 1191 521

6.1. Experimental setup

In the empirical evaluation, we have used six benchmark
atasets in four domains (phone, camera, laptop and restaurant)
nd two languages (English and Chinese) from the SemEval 2015
ask 12 [63] and 2016 task 5 [64]. In all the experiments, we per-
orm 2-class classification to label an aspect polarity as positive or
egative. Note that the datasets of LAP16, RES16, LAP15 and RES15
ontain some neutral instances, which are simply ignored in our
xperiments. The statistics of the benchmark datasets are pre-
ented in Table 3, in which #N(ACSA) and #N(ATSA) denote the
umbers of aspect category units and aspect term units respec-
ively. Note that aspect terms are not specified on these bench-
ark datasets. We have manually identified the aspect terms

n LAP16, RES16, LAP15 and RES15 according to the annotation
uideline.2
For DNN models, we used the Glove embeddings3 for English

ata, and the word embeddings from Baidu4 for Chinese data. We
mployed jieba5 to tokenize Chinese sentences. In easy instance
abeling and feature extraction for GML, we used the open-source
pinion Lexicon6 for English data, and the EmotionOntology7 and
osonNLP8 lexicons for Chinese data.
For DNN model training, we used the default ratio of train

and test data provided in the benchmark. GML has been instead
directly run on the test data without leveraging any labeled
training data. For easy instance identification, the scores for the
sentiment words in the Chinese lexicons are normalized into the
range of [−4, 4], and we use the sentiment words whose scores
are at least 1. In our implementation of GML, the initial weights of
word features, similar relational features and opposite relational
features are set to 0, 2 and −2 respectively. In the process of
calable gradual inference, if none of the unlabeled instances
eceives any evidential support from the labeled easier instances,
ML employs the existing unsupervised method of LEX-SYN [62]
o label the remaining instances.

In the comparative study, we report the average and standard
eviation of accuracy over ten runs. Our implementation codes of
ML have been made open-source available.9

.2. Comparative evaluation

In the comparative study, we set m = 20, k = 3, df = d∗f =
.4, and df ′ = d∗f ′ = 0.1 for GML. Our sensitivity evaluation in
ection 6.4 has shown that the performance of GML is, to a large
xtent, insensitive to the parameter setting.

2 http://alt.qcri.org/semeval2014/task4/data/uploads/semeval14_absa_
nnotationguidelines.pdf.
3 https://nlp.stanford.edu/projects/glove/.
4 http://pan.baidu.com/s/1jIb3yr8.
5 https://github.com/fxsjy/jieba.
6 https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html.
7 http://ir.dlut.edu.cn/EmotionOntologyDownload.
8 https://bosonnlp.com/dev/resource.
9 https://chenbenben.org/gml.html.
9

The detailed evaluation results for ACSA and ATSA are pre-
sented in Tables 4 and 5 respectively. Note that VADER cannot
be directly applied on Chinese data, therefore we only report its
performance on English data. The best result achieved on each
dataset is also highlighted in the table. We can see that GML
consistently outperforms the unsupervised alternatives, LEX-SYN
and VADER (their performance difference is less than 1% in most
cases), by considerable margins on all the test datasets. For ACSA,
the improvement margins on PHO16, RES16 and LAP15 are around
%–9%; the margins on LAP16 is even larger at more than 10%.
or ATSA, it achieves the improvements of more than 10% on
AP16 and around 5% on both RES16 and LAP15. Due to the
idely recognized challenge of sentiment analysis, the achieved

mprovements can be deemed very considerable.
Furthermore, it can be observed that the performance of GML

s highly competitive compared with the supervised DNN tech-
iques. Except GCAE, GML achieves overall better performance
han all the other DNN models on both ACSA and ATSA. For
nstance, for ACSA, GML beats both AT-LSTM and ATAE-LSTM
n performance on five out of totally six datasets. For ATSA,
ML achieves the best performance on two out of totally four
atasets; except GCAE, it outperforms all the other DNN model
n at least three out of the four datasets. GML even beats GCAE
n the ACSA task of LAP15 and the ATSA tasks of LAP15 and
ES15; their performance on the other datasets are close. It can
lso be observed that the semi-supervised model of ASVAET can
nly improve the performance of DNN by small margins (less
han 2% in most cases). Therefore, the performance of GML is
imilarly competitive with the semi-supervised approach. It is
orthy to point out that unlike the supervised and semi-supervised
NN models, GML does not use any labeled training data provided in
he benchmark. These experimental results evidently demonstrate
he efficacy of GML.

To further demonstrate the effectiveness of gradual inference,
e have also separately compared GML with a trimmed version
f SenHint [52,53], which does not encode the influence of DNN
utput. Both GML and SenHint begin with the same set of easy
nstances; they also extract the same sets of word and relational
eatures. Since GML and SenHint have the same performance
n easy instances, we only compare their performance on hard
nstances. Their comparative evaluation results have been pre-
ented in Table 6, in which percentage values represent the
ccuracies of polarity detection achieved on hard instances with
hared features. It can be observed that GML achieves better per-
ormance than SenHint on all test cases of ACSA and ATSA. These
valuation results clearly demonstrate the efficacy of gradual
nference used by GML.

.3. Evaluation of easy instance labeling

In this subsection, we first evaluate the performance of the
roposed technique for easy instance labeling, and then its effect
n the performance of GML by a comparative study. We have
ompared our proposed technique with VADER, which has been
mpirically shown to perform slightly better than LEX-SYN. In
ur setting, VADER considers an instance as easy if the absolute
alue of its sentiment score is more than a threshold (e.g., 0.4 and
.5). Note that the overall sentiment strength for VADER is a float
ithin the range [−1.0, 1.0].
The detailed evaluation results on the ACSA and ATSA tasks

re presented in Table 7. It can be observed that

1. A considerable portion of aspect polarities in the test
datasets (varying from 48% to 60%) can be identified by our
proposed technique as easy, and its accuracy is always high
at more than 90%;

http://alt.qcri.org/semeval2014/task4/data/uploads/semeval14_absa_annotationguidelines.pdf
http://alt.qcri.org/semeval2014/task4/data/uploads/semeval14_absa_annotationguidelines.pdf
https://nlp.stanford.edu/projects/glove/
http://pan.baidu.com/s/1jIb3yr8
https://github.com/fxsjy/jieba
https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html
http://ir.dlut.edu.cn/EmotionOntologyDownload
https://bosonnlp.com/dev/resource
https://chenbenben.org/gml.html
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ccuracy comparison for ACSA on benchmark datasets.
Model PHO16 CAM16 LAP16 RES16 LAP15 RES15

LEX-SYN 68.43% 78.17% 69.64% 76.77% 75.81% 75.31%
VADER – – 68.31% 75.18% 74.31% 75.59%

H-LSTM (73.30 ± 0.19)% (78.80 ± 0.60)% (77.68 ± 0.65)% (81.44 ± 0.39)% (79.03 ± 0.48)% (73.13 ± 1.26)%
AT-LSTM (73.27 ± 1.21)% (82.49 ± 0.58)% (76.32 ± 0.74)% (83.00 ± 0.43)% (79.03 ± 1.00)% (76.52 ± 1.51)%
ATAE-LSTM (72.40 ± 0.82)% (81.12 ± 0.70)% (77.90 ± 1.10)% (83.81 ± 1.08)% (79.88 ± 0.79)% (79.42 ± 1.07)%
GCAE (76.94 ± 0.48)% (82.12 ± 0.53)% (81.94 ± 0.40)% (86.44 ± 0.61)% (82.21 ± 0.51)% (79.81 ± 0.70)%
GML (76.14 ± 0.63)% (81.41 ± 0.25)% (79.84 ± 0.34)% (85.31 ± 0.06)% (83.94 ± 0.28)% (78.57 ± 0.48)%
Table 5
Accuracy comparison for ATSA on benchmark datasets.
Model LAP16 RES16 LAP15 RES15

LEX-SYN 67.01% 79.90% 76.55% 75.82%
VADER 67.22% 79.39% 77.11% 78.50%

AT-LSTM (75.49 ± 1.22)% (88.11 ± 0.39)% (80.08 ± 0.87)% (76.99 ± 1.53)%
ATAE-LSTM (76.91 ± 0.50)% (85.44 ± 0.95)% (78.65 ± 0.64)% (74.98 ± 0.98)%
GCAE (80.21 ± 0.83)% (90.07 ± 0.47)% (80.26 ± 0.82)% (78.31 ± 0.64)%

IAN (78.04 ± 0.43)% (87.50 ± 0.44)% (79.43 ± 0.81)% (78.34 ± 1.02)%
RAM (80.21 ± 1.26)% (87.74 ± 0.45)% (80.49 ± 0.88)% (77.61 ± 1.04)%
AOA (78.04 ± 0.74)% (87.80 ± 0.47)% (81.13 ± 0.40)% (78.88 ± 0.58)%
TNet (79.16 ± 1.10)% (86.99 ± 0.49)% (79.06 ± 0.79)% (76.37 ± 0.89)%

ASVAET(IAN) (78.71 ±0.56 )% (89.36 ±0.32 )% (81.99 ± 0.64)% (78.96 ± 0.62)%

GML (80.13 ± 0.31)% (85.54 ± 0.64)% (82.48 ± 0.44)% (80.58 ± 0.22)%
Table 6
Performance comparison between GML and SenHint: polarity detection accuracy on hard instances with shared features.

ACSA ATSA

PHO16 CAM16 LAP16 RES16 LAP15 RES15 LAP16 RES16 LAP15 RES15

GML 62.65% 68.54% 75.95% 77.57% 78.63% 73.70% 80.57% 86.34% 76.27% 80.87%
SenHint 60.82% 66.75% 73.77% 76.76% 75.38% 72.17% 76.14% 83.06% 70.17% 76.39%
Table 7
Evaluation of easy instance labeling: Prop and Acc denote the proportion and achieved accuracy of identified easy instances respectively.

ACSA ATSA

LAP16 RES16 LAP15 RES15 LAP16 RES16 LAP15 RES15

VADER (thres = 0.4) Prop 48.87% 62.34% 51.50% 58.21% 50.52% 69.54% 54.78% 62.57%
Acc 85.29% 90.51% 87.02% 85.07% 86.36% 93.69% 88.01% 90.80%

VADER (thres = 0.5) Prop 33.82% 48.63% 36.98% 46.48% 35.91% 56.59% 41.65% 50.48%
Acc 84.65% 93.47% 89.72% 87.24% 84.88% 95.82% 89.64% 92.02%

Our approach Prop 48.07% 56.85% 55.41% 48.83% 49.06% 60.30% 56.66% 51.44%
Acc 92.80% 92.64% 94.59% 92.37% 95.32% 93.00% 95.36% 94.03%
Table 8
Performance comparison between GML-vader0.4, GML-vade0.5 and GML.

ACSA ATSA

LAP16 RES16 LAP15 RES15 LAP16 RES16 LAP15 RES15

GML-vader0.4 76.35% 83.29% 79.33% 75.83% 75.37% 87.13% 76.59% 79.04%
GML-vader0.5 74.35% 82.86% 75.46% 76.55% 71.69% 86.05% 74.71% 76.47%
GML 79.84% 85.31% 83.94% 78.57% 80.13% 85.54% 82.48% 80.58%
2. Compared with our proposed technique, VADER with the
threshold of 0.4 (i.e., VADER(thres= 0.4)) can identify more
easy instances but with considerably lower accuracy;

3. Compared with our proposed technique, VADER with the
threshold of 0.5 (i.e., VADER(thres = 0.5)) can only identify
less easy instances, and its accuracy is also lower in most
cases.

We have also evaluated the effect of different techniques on
he performance of GML. The detailed evaluation results are pre-
ented in Table 8, in which GML-vader0.4 (resp. GML-vader0.5)
enotes GML that identifies easy instances using VADER with the
hreshold of 0.4 (resp. 0.5). It can be observed that compared with
10
GML-vader0.4 and GML-vader0.5, GML achieves better perfor-
mance on seven out of totally eight datasets. Our experimental re-
sults have clearly validated the efficacy of our proposed technique
for easy instance labeling.

6.4. Sensitivity evaluation

In the sensitivity evaluation, we first vary the values of the
parameters m and k as shown in Algorithm 1, which respectively
denote the number of candidate variables selected for approx-
imate entropy ranking and the number of candidate variables
selected for factor graph inference. We set m= 10, 20, 30, 40, and
k = 1, 3, 5, 7. We then vary the values of the parameters, d , d ′ ,
f f
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Table 9
Sensitivity evaluation over ACSA tasks.

PHO16 CAM16 LAP16 RES16 LAP15 RES15

w.r.t m (k = 3)

m = 10 75.91% 81.54% 79.95% 83.93% 84.24% 79.39%
m = 20 76.14% 81.41% 79.84% 85.31% 83.94% 78.57%
m = 30 76.26% 81.25% 80.08% 84.79% 83.94% 79.47%
m = 40 75.61% 80.96% 80.08% 84.76% 84.03% 79.11%

w.r.t k (m = 20)

k = 1 77.28% 81.58% 79.95% 84.99% 83.06% 79.81%
k = 3 76.14% 81.41% 79.84% 85.31% 83.94% 78.57%
k = 5 75.69% 80.91% 77.90% 85.11% 82.97% 79.08%
k = 7 75.92% 80.54% 80.05% 85.08% 83.16% 78.69%

w.r.t df ′ and df (m = 20 k = 3)

d′f df PHO16 CAM16 LAP16 RES16 LAP15 RES15

0.1 0.2 76.60% 81.25% 79.81% 82.91% 84.22% 79.64%
0.1 0.3 76.67% 80.79% 79.76% 84.53% 83.96% 78.64%
0.1 0.4 76.14% 81.41% 79.84% 85.31% 83.94% 78.57%
0.2 0.3 76.45% 80.91% 79.73% 84.82% 84.08% 78.97%
0.2 0.4 76.41% 81.08% 79.89% 84.59% 84.01% 78.72%
0.2 0.5 76.26% 81.41% 79.81% 85.05% 84.12% 79.69%
0.3 0.4 75.95% 80.96% 79.79% 84.62% 83.99% 78.92%
0.3 0.5 76.22% 80.91% 80.16% 85.25% 83.64% 78.58%
Fig. 3. Scalability evaluation.
Y
g
w
0

∗

f and d∗f ′ , which denote the degree of uncertainty of word and
relational features as shown in Eqs. (7), (8), (12) and (13). We set
df = d∗f , df ′ = d∗f ′ , and df ′ < df <= 0.5. While evaluating GML’s
ensitivity to a particular parameter, we fix any other parameter
o the same value.

The detailed evaluation results on ACSA are presented in Ta-
le 9. Since the standard deviations of accuracy are very similar
nder different parameter setting, we only report the averages of
ccuracy in the table. The evaluation results on ATSA are similar,
hus omitted here. It can be observed that the performance of
ML only fluctuate slightly (≤ 1% in most cases) with different
arameter settings. It is noteworthy that the performance of
ML does not fluctuate much with various values of m and k.
ince most of GML’s runtime is spent on factor graph inference,
educing the value of k can effectively improve efficiency. Our
xperiments show that even with k taking the minimal value
f 1, the performance of GML only changes marginally. We also
ave the similar observation on the parameter setting of df and
f ′ . Various value combinations of df and df ′ can only result in
ery marginal performance fluctuations. Our experimental results
ave clearly shown that the performance of GML is, to a large
xtent, insensitive to the parameter settings. They bode well for
ts applicability in real scenarios.

.5. Scalability evaluation

In this section, we evaluate the scalability of the proposed
calable approach for GML. We have generated the restaurant
orkloads with different sizes by retrieving the reviews from
11
elp. The workload size varies from 1000 to 5000. All the al-
orithmic parameters are set to the same values for different
orkloads. In the experiments, we set m = 20, k = 3, df = d∗f =
.4, and df ′ = d∗f ′ = 0.1. The detailed evaluation results in terms

of runtime are presented in Fig. 3. We have observed that most
of the runtime is spent on factor graph inference. Even though
the total number of extracted features in a task may be large, the
number of features a single instance has is usually quite limited.
As a result, the size of the subgraph constructed for scalable factor
inference on an unlabeled variable generally increases linearly
with workload size. Accordingly, the average computational cost
of the scalable GML spent on each unlabeled variable increases
nearly linearly with workload size. Therefore, as shown in Fig. 3,
the proposed scalable approach scales well with workload size.

7. Conclusion

In this paper, we have proposed a technical solution for the
task of ALSA based on the recently proposed paradigm of gradual
machine learning. It begins with some easy instances in an ALSA
task, and then gradually labels the more challenging instances
based on iterative factor graph inference without any human
intervention. Our empirical study on the benchmark datasets has
validated the efficacy of the proposed solution.

Our research on gradual machine learning is an ongoing effort.
Future work can be pursued on several fronts. Even though GML
has been proposed as unsupervised learning approach, human
work can be potentially integrated into its process for improved
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erformance. An interesting open challenge is then how to ef-
ectively improve the performance of gradual machine learning
or ALSA with the minimal effort of human intervention, which
nclude but are not limited to manually labeling some instances.
t is also interesting to develop the solution of gradual machine
earning for the challenging classification tasks other than entity
esolution and sentiment analysis.
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