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Abstract

The state-of-the-art performance on entity resolution (ER) has been achieved by deep learning. However, deep models
usually need to be trained on large quantities of accurately labeled training data, and can not be easily tuned towards a
target workload. However, in real scenarios, there may not be sufficient training data; even if they are abundant, their
distribution is almost certainly different from target data to some extent.

To alleviate such limitation, this paper proposes a novel risk-based adaptive training approach for ER that can tune
a deep model towards its target workload by the workload’s particular characteristics. Built on the recent advances on
risk analysis for ER, the proposed approach first trains a deep model on labeled training data, and then fine-tunes it
on unlabeled target data by minimizing its misprediction risk. Our theoretical analysis shows that risk-based adaptive
training can correct the label status of a mispredicted instance with a fairly good chance. Finally, we empirically
validate its efficacy on real benchmark data by a comparative study. Our extensive experiments show that it can
considerably improve the performance of deep models. Furthermore, in the scenario of distribution misalignment, it
can similarly outperform the state-of-the-art alternatives of transfer learning by considerable margins. Using ER as a
test case, we demonstrate that risk-based adaptive training is a promising approach potentially applicable to various
challenging classification tasks.
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1. Introduction

As a very important problem for data integration [1], ER aims to identify equivalent records that refer to the same
real-world entity. Considering the running example shown in Figure 1, ER needs to match the paper records between
two tables, R1 and R2. A pair of < r1i, r2 j >, in which r1i and r2 j denote a record in R1 and R2 respectively, is called
an equivalent pair if and only if r1i and r2 j refer to the same paper; otherwise, it is called an inequivalent pair. In this5

example, r11 and r21 are equivalent while r11 and r22 are inequivalent. ER can be considered as a binary classification
problem tasked with labeling record pairs as matching or unmatching.

The state-of-the-art performance on ER has been achieved by deep learning [2, 3, 4, 5, 6]. However, the efficacy of
these deep models depends on large quantities of accurately labeled training data, which may not be readily available
in real scenarios. Furthermore, in the typical setting of deep learning, a classifier tunes its model parameters on labeled10

training data to ensure that its predictions on the training instances are consistent with their ground-truth labels. The
resulting classifier is then supposed to be directly applied on a target workload. It can be observed that the typical
process of model training does not involve unlabeled data in a target workload, even though to alleviate the over-fitting
problem, labeled validation data are usually provided as a proxy workload and leveraged for hyperparameter tuning.
Theoretically, the efficacy of this approach is based on the assumption that training and target data are independently15
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Figure 1: An ER running example.

and identically distributed (the i.i.d assumption). Unfortunately, in real scenarios, even when training and target data
come from the same domain, the i.i.d assumption may not hold due to: 1) training data are not sufficient to fully
represent the statistical characteristics of a target workload; 2) even though training data are abundant, its inherent
distribution may be to some extent different from a target workload. Therefore, it is common in real scenarios that a
well trained deep model does not perform well on a target workload.20

Many adaptation approaches have been proposed to alleviate distribution misalignment, most notably among them
transfer learning [7, 8, 9] and adaptive representation learning [10, 11, 12, 13, 14]. Transfer learning aims to adapt
a model learned on training data in a source domain to a target domain. Similarly, adaptive representation learning,
which was originally proposed for image classification, mainly studies how to learn domain-invariant features shared
among diversified domains. Unfortunately, distribution misalignment remains very challenging. The main reason is25

that the existing approaches focus on how to extract and leverage the common knowledge shared between a source
task and a target task; however, they can not effectively tune a classifier towards its target task by the task’s particular
characteristics.

It has been well recognized that in real scenarios, with or without adaptation, a well-trained classifier may not be
accurate in its predictions. Even worse, it may provide high-confidence predictions which turn out to be wrong [15].30

Such prediction uncertainty has emerged as a critical concern to AI safety [16]. Therefore, various approaches [17,
18, 19, 20, 21] have been proposed for the task of risk analysis, which aims to estimate the misprediction risk of a deep
classifier when applied to a certain workload. Since risk analysis can measure the misprediction risk of a classifier
on unlabeled data, it provides classifier training with a viable way to adapt towards a particular workload. Hence,
we propose a risk-based approach to enable adaptive deep learning for ER in this paper. Since the recently proposed35

LearnRisk [21] is more interpretable and more accurate in identifying mispredictions than previous alternatives, we
build the solution of adaptive deep training upon LearnRisk in this paper.

We have sketched the proposed approach in Figure 2. It consists of two phases, the phase of traditional training
followed by the phase of risk-based training. In the first phase, a deep model is trained on labeled training data in
the traditional way; in the second phase, it is further tuned on unlabeled target data to minimize its misprediction risk.40

The main contributions of this paper can be summarized as follows:

• We propose a novel risk-based approach to enable adaptive deep learning.

• We present a solution of adaptive deep learning for ER based on the proposed approach.

• We theoretically analyze the performance of the proposed solution for ER. Our analysis shows that risk-based
adaptive training can correct the label status of a mispredicted instance with a fairly good chance.45
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Figure 2: Risk-based Adaptive Training.

• We empirically validate the efficacy of the proposed solution on real benchmark data by a comparative study.

The rest of this paper is organized as follows: Section 2 reviews related work. Section 3 presents the preliminaries.
Section 4 presents the adaptive training approach and its theoretical results. Section 5 presents our empirical evaluation
results. Finally, Section 6 concludes this paper with some thoughts on future work.

2. Related Work50

We review related work from three mutually orthogonal perspectives: entity resolution, model training and en-
semble learning. For more detailed review on deep learning for ER, please refer to the survey [22].

Entity Resolution. Playing a key role in data integration, ER has been extensively studied in the literature [23, 24, 25].
ER can be automatically performed based on rules [26, 27, 28], probabilistic theory [29, 30] and machine learning
models [1, 31, 32, 33]. The state-of-the-art solutions for ER have been built upon various DNN models [2, 3, 4,55

5, 6, 22, 34, 35]. Specifically, the first deep learning architecture template for ER was proposed in [3]. In the
following work [6], they presented an improved solution based on pre-trained Transformer-based language models
(e.g., BERT). The authors of [35] proposed a solution that combines the Transformer attention and hierarchical graph
attention network to exploit various relationships among ER decisions. The authors of [34] proposed a siamese
structure to accelerate the process of BERT-based ER. To reduce the labeling effort required by deep models, the60

authors of [36] applied adversarial active learning on deep ER. In addition, various domain adaption techniques have
been proposed for deep ER to reduce required training data on new workloads [37, 38, 39]. In particular, the authors
of [39] systematically explored various existing domain adaptation methods and found that adversarial-based method
performs the best on the ER task. It is noteworthy that this paper does not attempt to propose a new deep model
for ER. It instead focuses on how to tune a deep model towards its target workload via risk analysis. Therefore, the65

existing work on deep learning for ER is orthogonal to ours. In principle, our proposed approach can work with any
deep model for ER.

ER remains very challenging in real scenarios due to prevalence of dirty data. Therefore, there is a need for risk
analysis, alternatively called trust scoring and confidence ranking in the literature. The proposed solutions range from
those simply based on the model’s output probabilities to more sophisticated and interpretable ones [17, 19, 21, 40].70

Most recently, we proposed an interpretable and learnable framework for ER, LearnRisk[21]. In our following work
[41], we also proposed to actively select training data for ER models based on the results of risk analysis. In this
paper, we investigate how to leverage the results of risk analysis to fine-tune a deep model toward its target workload.

Model Training. A common challenge for model training is the over-fitting, which refers to the phenomenon that a
model well tuned on training data performs unsatisfactorily on target data. The de facto standard approach to alleviate75
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over-fitting is by leveraging validation data for hyperparameter tuning and model selection (e.g., cross validation) [42].
Another noteworthy complementary technique is the regularization [43, 44, 45, 46], which aims to reduce the number
of model parameters to a manageable level. Both hyperparameter tuning and model selection are to a large extent
orthogonal to model training considered in this paper.

The classical way to alleviate the insufficiency of labeled training data is by semi-supervised learning [47, 48].80

However, semi-supervised learning investigated how to leverage unlabeled training data, which usually have a similar
distribution with labeled training data. It is obvious that the techniques for semi-supervised learning can be straight-
forwardly incorporated into the traditional training phase of our proposed approach. They are therefore orthogonal to
our work. Another way to reduce labeling cost is by active learning [49, 50]. While active learning focuses on how
to select training data for labeling, we focus on how to adapt a model towards its target workload via risk analysis on85

unlabeled target data. Therefore, active learning is also orthogonal to our work.

Ensemble Learning. The classical way to alleviate the limitations of a single classifier is by ensemble learning [51,
52]. Ensemble learning first trains multiple classifiers using different training data (e.g., bagging [53]) or different
information in the same training data (e.g., boosting [54]), and then combines probably conflicting predictions to
arrive at a final decision. While our risk analysis approach, LearnRisk, uses the ensemble of risk features to measure90

misprediction risk, risk-based adaptive training is fundamentally different from ensemble learning due to: 1) unlike
the traditional labeling functions, LearnRisk aims to estimate an instance’s misclassification risk as predicted by a
classifier; 2) more importantly, the ensemble approach trains multiple models and tunes predictions based on training
data; in contrast, risk-based adaptive training trains only one model, and tunes the model towards its target workload.
It is noteworthy that since ensemble learning trains models based on training data, it is in fact orthogonal to our95

work. In principle, our proposed approach can also work with an ensemble learning model. However, how to tune an
ensemble model via risk measure requires further investigation in future.

3. Preliminaries

In this section, we first define the task of ER and then introduce the risk analysis approach of LearnRisk.

3.1. Task Statement100

This paper considers ER as a binary classification problem. A classifier needs to label every unlabeled pair as
matching or unmatching. As usual, we measure the quality of an ER solution by the standard metric of F1, which is a
combination of precision and recall as follows

F1 =
2 × precision × recall

precision + recall
. (1)

Table 1: The Frequently Used Notations

Notation Description

D an ER workload
Ds,Dv,Dt subsets of D, corresponding to training set, validation set and test set
di an instance pair in D
xi the feature representation vector of di

yi the label of di

µdi the expectation of equivalence probability of di

σdi (resp.σ2
di

) the standard deviation (resp. variance) of equivalence probability of di

fi a risk feature
wi the feature weight of fi
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For presentation simplicity, we summarize the frequently used notations in Table 1. As usual, we suppose that an
ER task, D, consists a set of labeled training data, Ds = {(xs

i , y
s
i )|i}, where each (xs

i , y
s
i ) denotes a training instance with

its feature representation xs
i and ground-truth label ys

i , a set of labeled validation data, Dv = {(xv
i , y

v
i )|i}, and a set of

unlabeled test data, Dt = {(xt
i, ?)|i}. Note that Dt denotes the target workload, and Dv serves as a proxy workload of

Dt. Formally, we define the task of ER as105

Definition 1. [ER Classification Task]. Given an ER workload D consisting of Ds, Dv and Dt, the task aims to learn
an optimal classifier, C∗, based on D such that the performance of C∗ on Dt as measured by the metric of F1, or
F1(C∗,Dt), is maximized.

3.2. Risk Analysis for ER: LearnRisk

The framework of LearnRisk consists of three main steps: risk feature generation, risk model construction and110

finally risk model training.

3.2.1. Risk feature generation
The step automatically generates risk features in the form of interpretable rules based on one-sided decision trees.

The generation algorithm ensures that the resulting rule-set is discriminative, i.e, each rule is highly indicative of one
class label over the other; and has a high data coverage, i.e, its validity spans over a considerable subpopulation of
the workload. As opposed to the labeling functions used to label pairs as matching or unmatching, a risk rule focuses
exclusively on one single class. Consequently, a risk feature acts as an indicator of the case where a classifier’s
prediction goes against the knowledge embedded in it. An example of risk rule is:

ri[Year] , r j[Year]→ inequivalent(ri, r j), (2)

where ri denotes a record and ri[Year] denotes ri’s attribute value at Year. With this knowledge, a pair predicted as
matching but having different publication years is supposed to have high mislabeling risk.

The detailed process of risk feature generation as well as its computational complexity have been described in115

our previous work [21]. For computational complexity, let n denote the size of training data, m the number of basic
metrics, and h the pre-specified depth of decision trees. Then, the total computational complexity of risk feature
generation can be represented by O(h · (2m)h ·n · logn). It is worthy to point out that the number of basic metrics (m) is
usually limited (e.g., dozens); to ensure interpretability, the maximum depth of decision tree (h) is also usually set to
a small value (e.g., 3-4 in our implementation). Therefore, the algorithm for risk feature generation can be executed120

efficiently in practice. Our previous empirical evaluation has also shown that it scales well with the size of training
data [21].

3.2.2. Risk model construction
Once high-quality features have been generated, the latter are readily available for the risk model to make use of,

allowing it to be able to judge a classifier’s outputs backing up its decisions with human-friendly explanations. To125

achieve this goal, LearnRisk, drawing inspiration from investment theory, models each pair’s equivalence probability
distribution (resp. portfolio reward) as the aggregation of the distributions of its compositional features (resp. stocks
rewards).

Formally, LearnRisk models the equivalence probability of a pair di by a random variable pi that follows a normal
distribution N(µi, σ

2
i ), where µi and σ2

i denote expectation and variance respectively. Given a set of m risk features
f1, f2, ..., fm, let w1,w2, ...,wm denote their corresponding weights. Suppose that µF = [µ f1 , µ f2 , . . . , µ fm ]T and σ2

F =

[σ2
f1
, σ2

f2
, . . . , σ2

fm
]T represent their corresponding expectation and variance vectors respectively, such thatN(µ f j , σ

2
f j

)
denotes the equivalence probability distribution of the feature f j. Then, the distribution of di can be estimated by:

µi = zi(w ◦ µF), (3)

and
σ2

i = zi(w ◦ w ◦ σ2
F), (4)
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where ◦ represents the element-wise product, and zi is a one-hot feature vector. Specifically, zi = [zi1, zi2, ..., zi j, ..., zim],
where zi j = 1 if di has the jth feature, otherwise zi j = 0.130

It is noteworthy that besides one-sided decision rules, LearnRisk also incorporates classifier output as one of its
risk features. Provided with the equivalence distribution pi for di, LearnRisk measures its risk by the metric of Value-
at-Risk (VaR) [55], which can effectively capture fluctuation risk of label status. Provided with a confidence level of
θ, the metric of VaR represents the maximum loss after excluding all worse outcomes whose combined probability is
at most 1-θ.135

3.2.3. Risk model training
Finally, LearnRisk trains a risk model on labeled validation data. It optimizes a learn-to-rank objective by tuning

the weights of risk features (wi) as well as their variances (σ2
i ). As for their expectations (µi), they are considered as

prior knowledge, and estimated based on labeled training data. Once trained, the risk model can be used to assess the
misprediction risk on an unseen workload labeled by a classifier.140

4. Risk-based Adaptive Training

In this section, we present the approach of risk-based adaptive training for ER. We take DeepMatcher [3], the
classical deep model for ER, as an example to illustrate our solution. However, in principle, our proposed approach
can similarly work with other deep models. The rest of this section is organized as follows: Subsection 4.1 describes
the traditional training approach. Subsection 4.2 presents the proposed approach of risk-based adaptive training.145

Finally, Subsection 4.3 presents the results of theoretical analysis.

4.1. Traditional Training

Given a workload, D={Ds, Dv, Dt}, let g(ω) denote a DNN classifier with the parameters of ω. The traditional
approach, as shown in the left part of Figure 2, tunes ω towards the training data, Ds, based on a pre-specified loss
function. Supposing that there are totally ns training instances in Ds, DeepMatcher employs the classical cross-entropy
loss function as follows:

Ltrain(ω) =
1
ns

ns∑
i=1

{−ys
i log(g(xs

i ;ω)) − (1 − ys
i )log(1 − g(xs

i ;ω))}, (5)

where ys
i denotes the ground-truth label of a training instance, (xs

i , y
s
i ), and g(xs

i ;ω) denotes its label probability as
predicted by the classifier. DeepMatcher uses the Adam optimizer to search for the optimal parameters ω∗ by gradient
descent [56].150

4.2. Risk-based Adaptive Training

Risk-based adaptive training, as shown in Figure 2, consists of two phases: the traditional training phase and the
risk-based training phase. In the first phase, it tunes a deep model towards training data in the traditional way. Then,
in the following risk-based training phase, it iteratively performs: i) using LearnRisk to learn a risk model based on a
trained classifier and validation data; ii) fine-tuning the classifier by minimizing its misprediction risk upon the target155

workload.
Specifically, risk-based training defines the loss function as

Lrisk
test (ω) =

1
nt

nt∑
i=1

{−[1 − VaR+(di)]log(g(xt
i;ω)) − [1 − VaR−(di)]log(1 − g(xt

i;ω))}, (6)

in which nt denotes the total number of instances in Dt, VaR+(di) (resp. VaR−(di)) denotes the estimated misprediction
risk of di if it is labeled as matching (resp. unmatching). Similar to traditional training, the risk-based training phase
updates the parameters of the deep model by gradient descent as follows

ωk+1 = ωk − α ∗ ∇ωkL
risk
test (ω). (7)
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Algorithm 1 Risk-based Adaptive Training
Input: A task D consisting of Ds, Dv and Dt, and an ER model, g(ω);
Output: A learned classifier g(ω∗).
ω0 ←Initialize ω with random values;
for k = 0 to m − 1 do
ωk+1 ← ωk − α ∗ ∇ωkLtrain(ωk);

end for
Select the best model, g(ω∗), based on Dv;
ωm ← ω∗;
for k = m to m + n − 1 do

Update the risk model based on Dv and g(ωk);
ωk+1 ← ωk − α ∗ ∇ωkL

risk
test (ωk);

end for
Select the best model, g(ω∗), based on Dv.
Return g(ω∗)

Note that in each iteration, risk values are estimated based on the classifier predictions of the previous iteration. As a
result, they are considered as constant while computing gradient descent .

We have sketched the process of risk-based adaptive training in Algorithm 1. The first phase pre-trains a model
based on labeled training data, and selects the best one based on its performance on validation data. Beginning with160

the pre-trained model, the second phase iteratively fine-tunes its parameters by minimizing the loss of Lrisk
test (ω) upon

the target workload.

4.3. Theoretical Analysis
Suppose that LearnRisk generates totally m risk features, denoted by { f1,. . . , fm}. Let Zi be a 0-1 variable indicating

whether an instance has the risk feature fi: Zi = 1 if the instance has fi, otherwise Zi = 0. Let Z = (Z1,Z2, ...,Zm)
denote a risk feature distribution. We can reasonably expect that LearnRisk is generally effective: if an instance
is equivalent (resp. inequivalent), its risk features (excluding its DNN output) can indicate its equivalence (resp.
inequivalence) status. As shown in Eq.3, LearnRisk estimates the equivalence probability expectation of an instance
by a weighted linear combination of the expectations of its DNN risk feature and rule risk features. Specifically, given
an equivalent pair of di, (µi,σ2

i ), with m rule risk features, we have

E(

∑m
j=1 z j · w j · µ f j∑m

j=1 z j · w j
) > 0.5, (8)

in which f j denotes a rule risk feature, and E(∗) denotes the statistical expectation. Similarly, if di is inquivalent, it
satisfies

E(

∑m
j=1 z j · w j · µ f j∑m

j=1 z j · w j
) < 0.5. (9)

According to Eq. 8 and 9, once a pair is correctly labeled by a classifier, it can be expected that its label would not
be flipped by risk-based fine-tuning. Our experiments on real data have confirmed that risk-based fine-tuning rarely165

flips the labels of true positives and true negatives. Therefore, in the rest of this subsection, we focus on showing that
given a mispredicted instance, di, risk-based fine-tuning can make its expectation, or the value of µi, be consistent
with its ground-truth label with a fairly good chance.

For theoretical analysis, since both true positives and false negatives (resp. true negatives and false postives) are
equivalent (resp. inequivalent) instances, they are assumed to share the same distribution of risk feature activation.170

Formally, we state the assumption on risk feature distribution as follows:

Assumption 1. Identicalness of Risk Feature Distributions. Given an ER workload, the risk feature activation of
each equivalent instance d+i , denoted by Z+i , is supposed to follow the same distribution of Z+; similarly, the risk
feature activation of each inequivalent instance d−i , denoted by Z−i , is supposed to follow the same distribution of Z−.
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Based on Assumption 1, we can establish the lower bound of the estimated equivalence probability expectation of175

a false negative by the following theorem. Due to space limit, the proofs of the lemmas and theorems are provided in
the supplemental materials.

Theorem 1. Given a false negative d̃−j , suppose that there are totally n true positives, denoted by d+i , ranked after d̃−j
by LearnRisk such that each true positive, d+i , satisfies

∆VaR− − ∆C− > ϵ, (10)

in which ∆VaR− = VaR−(d̃−j ) − VaR+(d+i ), and ∆C− = E(µd+i − 2σd+i ) − E(µd̃−j
− 2σd̃−j

). Then, for any δ ∈ (0, 1), with

probability at least 1 − δ, its expectation of equivalence probability of d̃−j , µd̃−j
, estimated by LearnRisk, satisfies

µd̃−j
≥

1
2
+
ϵ

2
−

√
m + 1

2
ln[

1

1 − (1 − δ
1
n )

1
2

], (11)

in which µ∗ denotes the expectation of equivalence probability and σ∗ denotes its standard deviation.

In Theorem 1, m denotes the number of rule risk features, and the value of ∆C− corresponds to the difference of
risk expectation between false negatives being labeled as matching and true positives being labeled as matching. Note180

that the total number of rule risk features (m) is usually limited (e.g., dozens or hundreds), while n is usually much
larger than m. It can be observed that in Theorem 1, by the exponential effect of n, the 3rd term on the right-hand side
tends to become zero as the value of n increases. Therefore, if ϵ > 0 and there are sufficient true positives satisfying
the specified condition, risk-based fine-tuning would have a fairly good chance to correctly flip the label of d̃−j from
unmatching to matching. To gain deeper insight into Theorem 1, we analyze the value of ∆VaR− − ∆C−. Since the185

optimization objective of LearnRisk is to maximize the risk difference between VaR−(d̃−j ) and VaR+(d+i ), ∆VaR− can
be expected to large for most true positives. Therefore, we analyze the value of ∆C−. Based on Assumption 1, we
have the following lemma:

Lemma 1.

∆C− ≤ max
{
E(wd+i (µ̂d+i − 2σ̂d+i )) − E(wd̃−j

(µ̂d̃−j
− 2σ̂d̃−j

)),E(wd+i µ̂d+i ) − E(wd̃−j
µ̂d̃−j

)
}
, (12)

where the µ̂∗ and σ̂∗ denote the DNN output probability and its corresponding standard deviation respectively, w∗
denotes the learned weight of DNN risk feature.190

It is interesting to point out that as shown in Lemma 1, the value of ∆C− only depends on the distributions of DNN
outputs and their weights, but independent of the distributions of rule risk features. It has the simple upper bound of

∆C− ≤ E(wd+i ). (13)

Hence, when the learned weight of DNN output becomes smaller, which means that the DNN becomes less accurate,
true positives would have a higher chance to satisfy ∆VaR− − ∆C− > 0. In our experiments, it is observed that the
expected weight of classifier output is usually between 0.2 and 0.6, or 0.2 ≤ E(wd+i ) ≤ 0.6. As a result, Theorem 1
shows that a false negative has a fairly good chance to be flipped from unmatching to matching.

Based on Assumption 1, the theoretical chance of a false positive being flipped from matching to unmatching can195

be similarly established. The corresponding theorem and lemma are presented as follows:

Theorem 2. Given a false positive d̃+j , suppose that there are totally n true negatives, denoted by d−i , ranked after d̃+j
by LearnRisk such that each true negative, d−i , satisfies

∆VaR+ − ∆C+ > ϵ, (14)

in which ∆VaR+ = VaR+(d̃+j ) − VaR−(d−i ), and ∆C+ = E(µd̃+j
+ 2σd̃+j

) − E(µd−i + 2σd−i ). Then, for any δ ∈ (0, 1), with

probability at least 1 − δ, its expectation of equivalence probability of d̃+j , µd̃+j
estimated by LearnRisk, satisfies

µd̃+j
≤

1
2
−
ϵ

2
+

√
m + 1

2
ln[

1

1 − (1 − δ
1
n )

1
2

],

in which µ∗ denotes the mean of equivalence probability and σ∗ denotes its standard deviation.
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Table 2: Empirical Validation of Theoretical Analysis.

(a) on True Positives and True Negatives

# # Flipped

True Positives 1143 12
True Negatives 5987 27

(b) on False Negatives and False Positives

#(∆VaR− > ∆C− False Negatives False Positives
or ∆VaR+ > ∆C+) # # Flipped # # Flipped

#< 100 1 0 0 0
#≥ 100 188 179 100 91
Total 189 179 100 91

In Theorem 2, the value of ∆C+ corresponds to the difference of risk expectation between false positives being
labeled as unmatching and true negatives being labeled as unmatching. Similar to the case of Theorem 1, it can be
observed that in Theorem 2, by the exponential effect of n, the 3rd term on the right-hand side tends to become zero as200

the value of n increases. Therefore, if ϵ > 0 and there are sufficient true negatives satisfying the specified condition,
risk-based fine-tuning would have a fairly good chance to correctly flip the label of d̃+j from matching to unmatching.
To gain a deeper insight into Theorem 2, we also analyze the value of ∆C+ by the following lemma:

Lemma 2.

∆C+ ≤ max
{
E(wd̃+j

(µ̂d̃+j
+ 2σ̂d̃+j

)) − E(wd−i (µ̂d−i + 2σ̂d−i )),E(wd̃+j
µ̂d̃+j

) − E(wd−i µ̂d−i )
}
, (15)

where the µ̂∗ and σ̂∗ denote the DNN output probability and its corresponding standard deviation respectively, w∗
denotes the learned weight of DNN risk feature.205

Similarly, as shown in Lemma 2, the value of ∆C+ has an upper bound constrained by the weights of DNN
outputs. The true negatives would tend to satisfy ∆VaR+ − ∆C+ > 0 in the case that the trained DNN model becomes
less accurate. Hence, Theorem 2 shows that a false positive has a fairly good chance to be flipped form matching to
unmatching.

Empirical Validation. We have illustrated the efficacy of theoretical analysis on the real literature dataset of DBLP-210

ACM1 The results on the first iteration of risk-based fine-tuning are presented in Table 2, in which false negatives
(resp. false positives) are clustered according to the size of true positives (resp. true negatives) that meet the specified
condition. It can be observed: 1) risk-based fine-tuning rarely flips the labels of true positives and true negatives; 2)
the majority of false negatives (resp. false positives) have a large number (e.g. ≥ 100) of corresponding true positives
(resp. true negatives), and most of them are correctly flipped.215

5. Empirical Study

In this section, we empirically evaluate the proposed approach on real benchmark datasets by a comparative
study. We first describe the experimental setting, then present the comparative evaluation results, and finally evaluate
robustness of the proposed approach w.r.t the size of validation data.

1https://github.com/anhaidgroup/deepmatcher/.

9



Table 3: The statistics of datasets.

Dataset Size # Matches # Attributes

DS 28,707 5,347 4
DA 12,363 2,220 4
Cora 12,674 3,268 12
AB 9,575 1,028 3
IA 539 132 8
SG 19,633 6,108 7

5.1. Experimental Setup220

We have used six real datasets from three domains in our empirical study:

• Publication. The datasets in this domain contain bibliographic data from different sources, i.e. DBLP, Google
Scholar and ACM. As in [3], we use DBLP-Scholar2 (denoted by DS) and DBLP-ACM 2 (denoted by DA).
Additionally, we use the Cora dataset3, which contains the citation data obtained from the Cora search engine;

• Music. In this domain, we use the Itunes-Amazon dataset (denoted by IA) provided by [3]. The size of IA is225

relatively small, containing only 539 pairs. Additionally, we use the Songs dataset4 (denoted by SG), which
contains song records. On SG, the experiments match the entries within the same table;

• Product. In this domain, we use the dataset containing the electronics product pairs extracted from Abt.com
and Buy.com 2. We denote this dataset by AB.

As usual, on all the datasets, we use the blocking technique to filter the pairs deemed unlikely to match. The230

datasets of DS, DA, AB and IA have been made online available at 2. On both Cora and SG, we first filter the pairs
and then randomly select a proportion of the resulting candidates to generate the workloads. We have provided the
statistics of the test datasets in Table 3.

We evaluate the proposed approach in both scenarios where training and test data come from the same source and
they come from different sources, thus resulting in more distribution misalignment. In the scenario where training and235

test data come from the same source, we randomly split each dataset into three parts by the ratio of 2:2:6 as in [3],
which specifies the proportions of training, validation and test set respectively. On DA, DS, Cora and SG, deep models
perform very well with the 20% split training data; therefore, we randomly select 10%, 30%, 50%, 70% and 100% of
the split set of training data to simulate different sufficiency levels. On both AB and IA, we instead fix the proportion
of validation data at 20% and vary the proportions of training and test data, resulting in totally 5 sufficiency levels240

of (50%,30%), (40%,40%), (30%,50%), (20%,60%), and (10%,70%). In this scenario, since training and target data
are randomly selected from the same source, we compare the Risk approach with the original DeepMatcher, which is
denoted by Tradition.

In the scenario of distribution misalignment, we use the three datasets in the domain of publication (i.e., DS, DA
and Cora) to generate six pairwise workloads. For instance, DA2DS denotes the workload where training data come245

from DA while validation data and test data come from DS. On all the workloads, validation and test data are randomly
selected from the original target dataset with both percentages set at 20%. In this scenario, besides Tradition, we also
compare Risk with the technique of transfer learning for ER proposed in [37]. We denote this approach by Transfer.
It inserts a dataset classifier into the DeepMatcher structure, which can force a deep model to focus on the parameters
shared by both training and test data.250

2https://github.com/anhaidgroup/deepmatcher/
3http://www.cs.utexas.edu/users/ml/riddle/data/cora.tar.gz
4http://pages.cs.wisc.edu/ãnhai/data/falcon data/songs/
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Figure 3: Comparative Evaluation with Deepmatcher: the Same-Source Scenario.

We have implemented the proposed solution based on the baseline deep model, DeepMatcher, by replacing the
original loss function with the risk-based loss function. To overcome the randomness caused by model initialization
and training data shuffling, on each experiment, we perform 5 training sessions and report their mean F1-score on
test data. In Tradition and Transfer, each training session consists of 20 iterations; in Risk, the traditional training
phase consists of 20 iterations and the risk-based training phase consists of additional 10 iterations. Our experiments255

show that further increasing the number of iterations in each session has only marginal impact on performance. In our
implementation, we use the default parameter setting of DeepMatcher. Specifically, we set the batch size at 32 and
the learning rate at 0.001. The learning rate decays at a rate of 0.8 when the model stops improving. As the original
DeepMatcher, we use a soft version of negative log likelihood loss and set the label smoothing parameter at 0.05.

Additionally, we have also implemented and evaluated the proposed solution based on Ditto [6], which is the260

state-of-the-art DNN for ER based on pre-trained Transformer-based language models. Note that compared with
DeepMatcher, Ditto generally performs better and can perform well with less training data. Therefore, on AB and IA,
our experiments begin with the ratio of training data at 10%. Similarly, we perform 5 training sessions and report their
mean F1-score on test data to overcome the randomness. We use the default parameters of Ditto for both traditional
training and adaptive training, except that the learning rate of risk-based training is set to be 3 ∗ 10−6, instead of265

the default 3 ∗ 10−5. Specifically, we set the batch size at 32 and the number of training epochs at 15. As the case
of DeepMatcher, the risk-based tuning phase consists of 10 iterations while the traditional training phase has 20
iterations. Our implementations based on DeepMatcher and Ditto have been made open-source at our website 5.

5.2. Comparative Evaluation on DeepMatcher
5.2.1. Same-source Scenario270

The comparative results are presented in Figure 3, in which we report both the mean of F1 score and its standard
deviation (represented by the shadow in the figure). It can be observed that Risk achieves consistently better perfor-

5https://chenbenben.org/adaptive-training.html
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Table 4: Comparative Evaluation with Deepmatcher: Distribution Misalignment.

Dataset F1 Score (Mean ± Standard deviation)
Tradition Transfer Risk

DA2DS 19.86 ± 5.12 43.81 ± 11.88 91.67±0.56
DA2Cora 76.47 ± 4.59 74.86 ± 3.70 89.08±0.81
Cora2DS 55.81 ± 5.90 62.08 ± 6.65 86.55±1.34
Cora2DA 71.28 ± 5.23 72.92 ± 7.57 96.99±0.34
DS2DA 93.08 ± 1.71 93.50 ± 1.49 94.18±0.97
DS2Cora 83.11 ± 1.81 82.48 ± 3.52 84.88±0.29

mance than Tradition. On the workloads where Tradition performs unsatisfactorily (e.g. AB and IA), the performance
margins between Risk and Tradition are very considerable. For instance, on AB, with the ratio of (2, 2, 6), Risk
outperforms Tradition by around 20% in terms of F1 (70% vs 51%).275

It can also be observed that on the workloads where Tradition can perform well (e.g. DS, DA, Cora and SG),
the performance margins between Risk and Tradition are similarly considerable when training data are insufficient.
For instance, on DS, with 10 percent of the training data, Risk outperforms Tradition by more than 6% and achieves
the F1 score of more than 92%. In particular, on DA and SG, with only 10% of the training data, Risk achieves the
performance very similar to what is achieved by using 100% of the training data. As the size of training data increases,280

the margins between Risk and Tradition tend to decrease. This trend can be expected, because when training and test
data are randomly selected from the same source, more training data mean less improvement potential for risk-based
fine-tuning. Due to the small size of IA, its comparative results have higher randomness compared with other datasets.

5.2.2. Scenario of Distribution Misalignment
The comparative results are presented in Table 4, in which the best results have been highlighted. It can be285

observed that: 1) the performance of Tradition deteriorates significantly on most testbeds; 2) the performance of
Transfer fluctuates wildly across the test workloads. As shown on DS2DA and DS2CORA, where Tradition performs
well, its impact becomes very marginal or even negative; 3) Risk consistently outperforms both Tradition and Transfer,
and the margins are very considerable in most cases.

We explain the efficacy of the risk-based approach by illustrative examples. On DA2DS, we observe that the290

model trained on DA performs very poorly (only around 20%) on the target workload of DS. This is mainly due to
the fact that DS is more challenging than DA, and the data distribution of DA to a large extent fails to reflect the more
complicated distribution of DS. In contrast, LearnRisk can reliably identify the mispredictions of the pre-trained model
on DS. We observe that in the first iteration of risk-based fine-tuning, it correctly identifies totally 877 mispredictions
among the top 1000 risky pairs, most of which are later correctly flipped. However, on the workloads (e.g. DS2DA295

and DS2CORA) where Tradition performs well, the advantage of Risk over Tradition becomes less considerable. This
result should be no surprise because in such circumstances, risk analysis becomes more challenging.

Furthermore, we have visualized the learned embeddings from the attribute similarity representation layer of
DeepMatcher on the DA2DS workload in Figure 5. The blue crosses represent the training data and the red points
represent the test data. It can be observed that, after tuning the DeepMatcher model based on risk analysis, feature300

representations become more compact and have more overlaps between training and test data as well, which mean
training and target data are more aligned.

5.3. Comparative Evaluation on Ditto
5.3.1. Same-source Scenario

The comparative results on Ditto are presented in Figure 4. It can be observed that Ditto generally performs305

better than Deepmatcher. For instance, on AB, with the ratio setting of (2, 2, 6), the F1 score of Ditto is 81%
while Deepmatcher can only achieve 51%. Similar to what have been observed on DeepMatcher, risk-based fine-
tuning effectively improves the performance of Ditto even though it is a better baseline. For instance, on SG, with
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Figure 4: Comparative Evaluation with Ditto: the Same-Source Scenario.

the percentage of training data at 10% and 30%, the performance improvements in terms of F1 are 11% and 6%
respectively. The evaluation results on Ditto demonstrate clearly that the proposed approach of risk-based adaptive310

training is generally applicable to various DNN models.

5.3.2. Scenario of Distribution Misalignment
In the scenario of distribution misalignment, besides the Tradition and Transfer, we also compare Risk with the

state-of-the-art domain adaptation approach named Invgan+KD presented in [39], which has been shown to perform
better than its alternatives. The detailed comparative results are presented in Table 5, where Tradition represents the315

Ditto-based model. It can be observed that Ditto significantly outperforms Deepmatcher in the scenario of distribution
misalignment. For example, on DA2DS, the F1 score of Ditto is more than 90% without employing any adaptation
technique, while the F1 score of Deepmatcher is only 20%. It is noteworthy that Risk achieves the best performance
on 4 out of totally 6 workloads, and its performance is very close to the best one on the other two workloads, DS2DA
and DA2DS. In comparison, both Transfer and Invgan+KD achieves the best performance on only one, DS2DA and320

DA2DS respectively. It can be observed that on both DS2DA and DA2DS, the performance of the baseline Ditto is
already very good, or more than 90%, and the improvement margins of Transfer, Invgan+KD and Risk are all very
small. This observation is consistent with the evaluation results on DeepMatcher, which show that the advantage of
Risk over a baseline deep model tends to decrease as the performance of the deep model improves.

5.4. Robustness w.r.t Size of Validation Data325

In real scenarios, validation data are necessary for hyperparameter tuning and model selection to ensure that a
trained model can generalize well. However, due to labeling cost, it is usually desirable to reduce the size of validation
data. Since risk analysis leverages validation data for risk model learning, we evaluate the performance robustness of
the proposed approach w.r.t the size of validation data.
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(a) Before Risk-tuning. (b) After Risk-tuning.

Figure 5: Visualization of feature representations on DA2DS dataset.
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Figure 6: Robustness Evaluation.

To this end, we fix the sets of training and test data at 20% and 60% respectively, and vary the size of validation330

data by randomly selecting a proportion of instances from the split set of validation data. The results on the DA, AB
and SG workloads are presented in Figure 6, in which the performance of Tradition and Risk with the whole set of
validation data are also included for reference. The evaluation for DA and SG is based on the setting that 10% of
the split set of training data is used. It can be observed that with as few as 100 validation instances, Risk is able to
improve classifier performance by considerable margins. Our evaluation results are consistent with those reported335

in [21], which showed that the performance of LearnRisk is very robust w.r.t the size of validation data. These
experimental results bode well for the application of the proposed approach in real scenarios.

6. Conclusion

In this paper, we have proposed a risk-based approach to enable adaptive deep learning for ER. It can effectively
tune a deep model towards its target workload by the workload’s particular characteristics. Both theoretical analysis340

and empirical study have validated its efficacy. For future work, it is worthy to point out that the proposed approach
is generally applicable to other classification tasks; their technical solutions however need further investigation.

On the other hand, there are still two limitations w.r.t the proposed solution worthy of future investigations. First,
our empirical study shows that the proposed solution’s advantage over a baseline deep model tends to decrease as the
performance of the deep model improves. This phenomenon is mainly due to the limited capability of the proposed345
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Table 5: Comparative Evaluation with Ditto: Distribution Misalignment.

Dataset F1 Score (Mean ± Standard deviation)
Tradition Transfer Invgan+KD Risk

DA2DS 90.69±1.15 89.77±0.88 92.19±0.48 91.35±0.76
DA2Cora 88.76±0.35 87.73±1.66 88.71±0.31 89.84± 0.53
Cora2DS 81.45±5.89 86.37±0.69 88.84±0.60 88.91±0.54
Cora2DA 88.87±3.89 94.43±1.01 93.48±1.33 95.25± 1.77
DS2DA 95 .28±1.54 96.16±0.40 95.98±0.13 95.87± 0.62
DS2Cora 84.63±0.06 84.73±0.32 84.86±0.77 85.01± 0.10

solution to generate knowledge beyond what can be discovered by deep models in the circumstances where labeled
training data are sufficient. However, even a well-trained deep model may still make some obvious mistakes, which
are easily detectable by common sense knowledge. Therefore, it is worthy to investigate how to incorporate common
sense knowledge into the process of risk feature generation for the purpose of improving risk analysis, finally risk-
based adaptive learning as well, in future work. Second, the current solution supposes that a target workload is readily350

available for risk fine-tuning. However, in some applications (e.g., network intrusion detection and automatic drive),
target data may only become available incrementally. How to adapt risk fine-tuning for these scenarios also deserves
further investigation.
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Appendix460

In theoretical analysis, for simplicity of presentation, without loss of generality, we suppose that LearnRisk sets
the confidence value at θ = 0.975. Hence, given a pair di with the equivalence probability distribution of N(µi, σ

2
i ),

its VaR risk is equal to 1 − (µi − 2σi) if it is labeled as matching by a classifier, and its VaR risk is equal to µi + 2σi if
it is labeled as unmatching.

Appendix .1. Proof of Theorem 1465

Theorem 1 Given a false negative d̃−j , suppose that there are totally n true positives, denoted by d+i , ranked after
d̃−j by LearnRisk such that each true positive, d+i , satisfies

∆VaR− − ∆C− > ϵ, (.1)

in which ∆VaR− = VaR−(d̃−j ) − VaR+(d+i ), and ∆C− = E(µd+i − 2σd+i ) − E(µd̃−j
− 2σd̃−j

). Then, for any δ ∈ (0, 1), with

probability at least 1 − δ, its expectation of equivalence probability of d̃−j , µd̃−j
, estimated by LearnRisk, satisfies

µd̃−j
≥

1
2
+
ϵ

2
−

√
m + 1

2
ln[

1

1 − (1 − δ
1
n )

1
2

],

in which µ∗ denotes the mean of equivalence probability and σ∗ denotes its standard deviation.
Note that in Theorem 1, m denotes the number of rule risk features and ∆C− denotes the difference of risk expec-

tation between false negatives being labeled as matching and true positives being labeled as matching. In the rest of
this section, we first prove a lemma that states the concentration inequalities of VaR risk functions, and then prove
Theorem 1 based on the lemma.470

Lemma 3. Given a randomly selected pair d+i from true positives, whose equivalence probability distribution esti-
mated by LearnRisk is denoted by N(µd+i , σd+i ), for any δ ∈ (0, 1), with probability at least (1 − δ), the following
inequality holds

(µd+i − 2σd+i ) − E(µd+i − 2σd+i ) ≤ ε,

where ε =
√

m+1
2 ln( 1

δ
). Similarly, for a randomly selected false negative d̃−j with equivalence probability distribution

of N(µd̃−j
, σd̃−j

), with probability at least (1 − δ), the following inequality holds

E(µd̃−j
− 2σd̃−j

) − (µd̃−j
− 2σd̃−j

) ≤ ε.

Proof. Consider the randomly selected pair d+i from true positives. The mean of its equivalence probability can be
represented by

µd+i =

m∑
k=1

wkµ fk Zk + wd+i µ̂d+i

m∑
k=1

wkZk + wd+i

,
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where m is the number of rule risk features, wk is the learned weight of a risk feature fk, µ fk is the probability mean
of the feature, Zk is a random variable indicates if a selected pair has this feature, and µ̂d+i is the output probability by
a classifier with its weight wd+i . Note that for a randomly selected true positive, the values of wk and µ fk for each rule
risk feature are fixed, while Zk, µ̂d+i and wd+i are random variables. Note that according to LearnRisk, the value of wd+i
totally depends on µ̂d+i .475

The standard deviation of its equivalence probability can also be represented by

σd+i =
1

m∑
k=1

wkZk + wd+i

√√ m∑
k=1

w2
kσ

2
fk Zk + w2

d+i
σ̂2

d+i
,

where σ̂2
d+i

denotes the corresponding variance of a classifier’s output µ̂d+i .
Recall that a function f : Xn → R has the bounded differences property if for some non-negative constants

c1, c2, ..., cn,

sup
x1,...,xn,x′k∈X

| f (x1, ..., xk−1, xk, xk+1, ..., xn) − f (x1, ..., xk−1, x′k, xk+1, ..., xn)| ≤ ck, 1 ≤ k ≤ n

The bounded differences property shows that if the ith variable is changed while all the others being fixed, the value
of f will not change by more than ck.

Let f (Z1, ...,Zm, µ̂d+i ) = µd+i − 2σd+i . Now we proceed to consider the bounded differences property of f . Note that
a valid equivalence probability should be between 0 and 1. Hence, for all µ ≥ 0, σ ≥ 0, we have 0 ≤ µ± 2σ ≤ 1. As a
result, by changing the value of Zk, we have

sup| f (z1, ..., zk, ..., zm, µ̂d+i ) − f (z1, ..., z′k, ..., zm, µ̂d+i )| ≤ 1

Similarly, the upper bound of f by changing the value of µ̂d+i is

sup| f (z1, ..., zm, µ̂d+i ) − f (z1, ..., zm, µ̂
′
d+i

)| ≤ 1

At this point, we have obtained the upper bounds of the function f (Z1, ...,Zm, µ̂d+i ) by changing any one of the
variables. Denoting these bounds as c1, ..., cm, cm+1, where ck = 1, 1 ≤ k ≤ m + 1, we have

m+1∑
k=1

c2
k = m + 1

Recall that the McDiarmid’s inequality [57] states that if a function f satisfies the bounded differences property
with constants c1, ..., cn. Let Y = f (X1, ..., Xn), where the Xks are independent random variables. Then, for all ε > 0,

P(Y − EY ≥ ε) ≤ exp(−
2ε2∑n
k=1 c2

k

);

P(EY − Y ≥ ε) ≤ exp(−
2ε2∑n
k=1 c2

k

).

Based on the McDiarmid’s inequality, for all ε > 0, we have

P(µd+i − 2σd+i − E(µd+i − 2σd+i ) ≥ ε) ≤ exp(−
2ε2∑m+1
k=1 c2

k

) = exp(−
2ε2

m + 1
).

Let δ = exp(− 2ε2

m+1 ), we can get that ε =
√

m+1
2 ln( 1

δ
). Hence, with the probability at least 1 − δ, the inequality

µd+i − 2σd+i − E(µd+i − 2σd+i ) ≤ ε holds.480

Similarly, with the probability at least 1 − δ, we have E(µd̃−j
− 2σd̃−j

) − (µd̃−j
− 2σd̃−j

) ≤ ε.
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In the following, we present the proof of Theorem 1.

Proof. [Theorem 1] According to Lemma 3, with the probability at least (1 − δ)2, the following inequalities hold

(µd+i − 2σd+i ) − E(µd+i − 2σd+i ) + E(µd̃−j
− 2σd̃−j

) − (µd̃−j
− 2σd̃−j

) ≤ 2ε;

(µd+i − 2σd+i − µd̃−j
+ 2σd̃−j

) + E(µd̃−j
− 2σd̃−j

) − E(µd+i − 2σd+i ) ≤ 2ε;

Hence, we have
µd+i − 2σd+i − µd̃−j

+ 2σd̃−j
≤ 2ε +

[
E(µd+i − 2σd+i ) − E(µd̃−j

− 2σd̃−j
)
]
, (.2)

where ε =
√

m+1
2 ln( 1

δ
). We denote

∆C− = E(µd+i − 2σd+i ) − E(µd̃−j
− 2σd̃−j

) = E(1 − (µd̃−j
− 2σd̃−j

)) − E(1 − (µd+i − 2σd+i )), (.3)

where E(1− (µd̃−j
−2σd̃−j

)) is the risk expectation of false negatives being labeled as matching and E(1− (µd+i −2σd+i )) is

the risk expectation of true positives being labeled as matching. Based on the definition of VaR, we have VaR−(d̃−j ) =
µd̃−j
+ 2σd̃−j

, and VaR+(d+i ) = 1 − (µd+i − 2σd+i ). Denoting ∆VaR− = VaR−(d̃−j ) − VaR+(d+i ), we have,

1 + ∆VaR− =µd̃−j
+ 2σd̃−j

+ µd+i − 2σd+i

≤µd̃−j
+ µd̃−j

+ 2ε +
[
E(µd+i − 2σd+i ) − E(µd̃−j

− 2σd̃−j
)
]

=2µd̃−j
+ 2ε + ∆C−.

(.4)

Hence, for a randomly selected false negative and a randomly selected true positive, with probability at least
(1 − δ)2, we have

µd̃−j
≥

1
2
+
∆VaR−

2
−

√
m + 1

2
ln(

1
δ

) −
∆C−

2
. (.5)

Note that the probability of the above inequality does not hold is [1 − (1 − δ)2]. Suppose that there are totally n true
positives d+i ranked after d̃−j by LearnRisk such that each true positive, d+i , satisfies ∆VaR− − ∆C− > ϵ. Then the
probability of Inequality .5 fails can be approximated by [1 − (1 − δ)2]n. That is, the probability of at least one of
the true positives can support the Inequality .5 is {1 − [1 − (1 − δ)2]n}. Let 1 − [1 − (1 − δ)2]n = 1 − δ′, we can get
δ = 1 −

√
1 − δ′

1
n . Therefore, with probability at least (1 − δ),

µd̃−j
≥

1
2
+
ϵ

2
−

√
m + 1

2
ln[

1

1 − (1 − δ
1
n )

1
2

]. (.6)

Note that the total number of rule risk features (m) is usually limited (e.g., dozens or hundreds), while n is usually
much larger than m. By the exponential effect of n, the 3rd term on the right-hand side tends to become zero as the
value of n increases.485

Appendix .2. Proof of Lemma 1

Lemma 1

∆C− ≤ max
{
E(wd+i (µ̂d+i − 2σ̂d+i )) − E(wd̃−j

(µ̂d̃−j
− 2σ̂d̃−j

)),E(wd+i µ̂d+i ) − E(wd̃−j
µ̂d̃−j

)
}
, (.7)

where the µ̂∗ and σ̂∗ denote the DNN output probability and its corresponding standard deviation respectively, w∗
denotes the learned weight of DNN risk feature.
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Proof. For simplicity of presentation, let Nd+i denote the weight normalization factor of d+i , or Nd+i =

m∑
k=1

wkZk + wd+i .

Similarly, let Nd̃−j
denote the weight normalization factor of d̃−j , or Nd̃−j

=

m∑
k=1

wkZk + wd̃−j
. According to the weight

function defined by LearnRisk [21], without loss of generality, we suppose that wd+i = wd̃−j
. As a result, Nd+i = Nd̃−j

.
Based on Assumption 1, we have,

E(µd+i − 2σd+i ) − E(µd̃−j
− 2σd̃−j

)

=E((µd+i − 2σd+i ) − (µd̃−j
− 2σd̃−j

))

=E
(

1
Nd+i

( m∑
k=1

wkµ fk Zk + wd+i µ̂d+i − 2

√√ m∑
k=1

w2
kσ

2
fk Zk + w2

d+i
σ̂2

d+i

)
−

1
Nd̃−j

( m∑
k=1

wkµ fk Zk + wd̃−j
µ̂d̃−j
− 2

√√ m∑
k=1

w2
kσ

2
fk Zk + w2

d̃−j
σ̂2

d̃−j

))

=E
(

1
Nd+i

( m∑
k=1

wkµ fk Zk + wd+i µ̂d+i − 2

√√ m∑
k=1

w2
kσ

2
fk Zk + w2

d+i
σ̂2

d+i
−

m∑
k=1

wkµ fk Zk − wd̃−j
µ̂d̃−j
+ 2

√√ m∑
k=1

w2
kσ

2
fk Zk + w2

d̃−j
σ̂2

d̃−j

))

=E
(

1
Nd+i

(
wd+i µ̂d+i − wd̃−j

µ̂d̃−j
+ 2

[√√ m∑
k=1

w2
kσ

2
fk Zk + w2

d̃−j
σ̂2

d̃−j
−

√√ m∑
k=1

w2
kσ

2
fk Zk + w2

d+i
σ̂2

d+i

]))
· · · (S 1)

If wd̃−j
σ̂d̃−j
< wd+i σ̂d+i , then

S 1 ≤ E
( 1
Nd+i

(
wd+i µ̂d+i − wd̃−j

µ̂d̃−j

))
.

If wd̃−j
σ̂d̃−j
≥ wd+i σ̂d+i , then

S 1 ≤ E
(

1
Nd+i

(
wd+i µ̂d+i − wd̃−j

µ̂d̃−j
+ 2

[√
w2

d̃−j
σ̂2

d̃−j
−

√
w2

d+i
σ̂2

d+i

]))
· · · (S 2)

= E
(wd+i

Nd+i

(
µ̂d+i − 2σ̂d+i

))
− E

(wd̃−j

Nd+i

(
µ̂d̃−j
− 2σ̂d̃−j

))
From step S 1 to step S 2, we apply the rule that if a ≥ 0, b ≥ 0, c ≥ 0 and b ≥ c, then

√
a + b −

√
a + c ≤

√
b −
√

c.
For simplicity of presentation, we denote the normalization of

wd+i
Nd+i

by wd+i , and similarly, the normalized wd̃−j
.490

Hence, we have

∆C− ≤ max
{
E(wd+i (µ̂d+i − 2σ̂d+i )) − E(wd̃−j

(µ̂d̃−j
− 2σ̂d̃−j

)),E(wd+i µ̂d+i ) − E(wd̃−j
µ̂d̃−j

)
}
,

where the µ̂∗ and σ̂∗ denote the DNN output probability and its corresponding standard deviation respectively, w∗
denotes the learned weight of DNN risk feature.

Appendix .3. Proof of Theorem 2

Similarly, based on Assumption 1, we theoretically analyze the chance of a false positive being flipped from
matching to unmatching. We first prove a lemma, and then prove Theorem 2 based on the lemma.495
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Lemma 4. For a randomly selected pair d−i from true negatives, we denote the mean of its equivalence probability
by µd−i , and the corresponding standard deviation by σd−i . For any δ ∈ (0, 1), with probability at least (1 − δ), the
following inequality holds

E(µd−i + 2σd−i ) − (µd−i + 2σd−i ) ≤ ε,

where ε =
√

m+1
2 ln( 1

δ
), m denotes the total number of rule risk features. Similarly, for a randomly selected false

positive d̃+j with the equivalence probability mean of µd̃+j
and the standard deviation of σd̃+j

, with probability at least
(1 − δ), the following inequality holds

(µd̃+j
+ 2σd̃+j

) − E(µd̃+j
+ 2σd̃+j

) ≤ ε.

Proof. Consider a randomly selected pair d−i from true negatives. The mean of its equivalence probability can be
represented by

µd−i =

m∑
k=1

wkµ fk Zk + wd−i µ̂d−i

m∑
k=1

wkZk + wd−i

,

where m denotes the number of rule risk features, wk denotes the weight of a risk feature fk, µ fk is the equivalence
probability mean of the feature fk, Zk is a random variable indicates if a selected pair has this feature, and µ̂d−i is the
output probability by a classifier with its weight wd−i . Note that for a randomly selected true negative, the values of wk

and µ fk for each risk feature are fixed, while Zk, µ̂d−i are random variables. Note that the value of wd−i totally depends
µ̂d−i .500

The standard deviation of its equivalence probability can also be represented by

σd−i =
1

m∑
k=1

wkZk + wd−i

√√ m∑
k=1

w2
kσ

2
fk Zk + w2

d−i
σ̂2

d−i
,

where σ̂2
d−i

denotes the corresponding variance of a classifier’s output µ̂d−i .
Let f (Z1, ...,Zm, µ̂d−i ) = µd−i + 2σd−i . Now we proceed to consider the bounded differences property of f . As in the

proof of lemma 1, for all µ ≥ 0, σ ≥ 0, we have 0 ≤ µ ± 2σ ≤ 1. Hence, by changing the value of Zk, we have

sup| f (z1, ..., zk, ..., zm, µ̂d−i ) − f (z1, ..., z′k, ..., zm, µ̂d−i )| ≤ 1

Similarly, the upper bound of f by changing the value of µ̂d−i is,

sup| f (z1, ..., zm, µ̂d−i ) − f (z1, ..., zm, µ̂
′
d−i

)| ≤ 1

At this point, we have obtained the upper bounds of function f (Z1, ...,Zm, µ̂d−i ) by changing any one of the variables.
Denoting these bounds by c1, ..., cm, cm+1, where ck = 1, 1 ≤ k ≤ m + 1, we have

m+1∑
k=1

c2
k = m + 1.

By applying the McDiarmid’s inequality, for all ε > 0, we have

P(E(µd−i + 2σd−i ) − (µd−i + 2σd−i ) ≥ ε) ≤ exp(−
2ε2∑m+1
k=1 c2

k

) = exp(−
2ε2

m + 1
).

Let δ = exp(− 2ε2

m+1 ), we can get that ε =
√

m+1
2 ln( 1

δ
). Hence, with the probability at least 1 − δ, the inequality

E(µd−i + 2σd−i ) − (µd−i + 2σd−i ) ≤ ε holds.
Similarly, with the probability at least 1 − δ, we have (µd̃+j

+ 2σd̃+j
) − E(µd̃+j

+ 2σd̃+j
) ≤ ε.
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Theorem 2 Given a false positive d̃+j , suppose that there are totally n true negatives, denoted by d−i , ranked after d̃+j
by LearnRisk such that each true negative, d−i , satisfies

∆VaR+ − ∆C+ > ϵ, (.8)

in which ∆VaR+ = VaR+(d̃+j ) − VaR−(d−i ), and ∆C+ = E(µd̃+j
+ 2σd̃+j

) − E(µd−i + 2σd−i ). Then, for any δ ∈ (0, 1), with

probability at least 1 − δ, its expectation of equivalence probability of d̃+j , µd̃+j
estimated by LearnRisk, satisfies

µd̃+j
≤

1
2
−
ϵ

2
+

√
m + 1

2
ln[

1

1 − (1 − δ
1
n )

1
2

],

in which µ∗ denotes the mean of equivalence probability and σ∗ denotes its standard deviation.505

Proof. With Lemma 4, with probability at least (1 − δ)2, the following inequalities hold

(µd−i + 2σd−i ) − E(µd−i + 2σd−i ) + E(µd̃+j
+ 2σd̃+j

) − (µd̃+j
+ 2σd̃+j

) ≥ −2ε;

(µd−i + 2σd−i − µd̃+j
− 2σd̃+j

) + E(µd̃+j
+ 2σd̃+j

) − E(µd−i + 2σd−i ) ≥ −2ε;

Hence, we have
µd−i + 2σd−i − µd̃+j

− 2σd̃+j
≥ −2ε −

[
E(µd̃+j

+ 2σd̃+j
) − E(µd−i + 2σd−i )

]
, (.9)

where ε =
√

m+1
2 ln( 1

δ
). We denote

∆C+ = E(µd̃+j
+ 2σd̃+j

) − E(µd−i + 2σd−i ), (.10)

where E(µd̃+j
+ 2σd̃+j

) is the risk expectation of false positives being labeled as unmatching and E(µd−i + 2σd−i ) is the

risk expectation of true negatives being labeled as unmatching. Based on the definition of VaR, we have VaR+(d̃+j ) =
1 − (µd̃+j

− 2σd̃+j
), and VaR−(d−i ) = µd−i + 2σd−i . Denoting ∆VaR+ = VaR+(d̃+j ) − VaR−(d−i ), we have

1 − ∆VaR+ =µd−i + 2σd−i + µd̃+j
− 2σd̃+j

≥µd̃+j
+ µd̃+j

− 2ε −
[
E(µd̃+j

+ 2σd̃+j
) − E(µd−i + 2σd−i )

]
=2µd̃+j

− 2ε − ∆C+.

(.11)

In Equation .11, the inequality is obtained by applying the Inequality .9. Hence, for a randomly selected false positive
and a randomly selected true negative, with probability at least (1 − δ)2, the following inequality holds

µd̃+j
≤

1
2
−
∆VaR+

2
+

√
m + 1

2
ln(

1
δ

) +
∆C+

2
. (.12)

Note that the probability of the above inequality does not hold is [1− (1−δ)2]. Suppose that there are totally n true
negatives, denoted by d−i , ranked after d̃+j by LearnRisk such that each true negative, d−i , satisfies ∆VaR+ − ∆C+ > ϵ.
Then the probability of Inequality .12 fails can be approximated by [1 − (1 − δ)2]n. That is, the probability of at least
one of the true negatives can support the Inequality .12 is {1− [1− (1− δ)2]n}. Let 1− [1− (1− δ)2]n = 1− δ′, we can
get δ = 1 −

√
1 − δ′

1
n . Therefore, with probability at least (1 − δ), we have

µd̃+j
≤

1
2
−
ϵ

2
+

√
m + 1

2
ln[

1

1 − (1 − δ
1
n )

1
2

], (.13)
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Appendix .4. Proof of Lemma 2
Lemma 2

∆C+ ≤ max
{
E(wd̃+j

(µ̂d̃+j
+ 2σ̂d̃+j

)) − E(wd−i (µ̂d−i + 2σ̂d−i )),E(wd̃+j
µ̂d̃+j

) − E(wd−i µ̂d−i )
}
, (.14)

where the µ̂∗ and σ̂∗ denote the DNN output probability and its corresponding standard deviation respectively, w∗
denotes the learned weight of DNN risk feature.

Proof. For simplicity of presentation, let Nd̃+j
denote the weight normalization factor of d̃+j , Nd̃+j

=

m∑
k=1

wkZk + wd̃+j
.

Similarly, Nd−i denote the weight normalization factor of d−i , Nd−i =

m∑
k=1

wkZk + wd−i . As in the proof of Lemma 1, we

suppose that Nd̃+j
= Nd−i . Based on Assumption 1, we have,

E(µd̃+j
+ 2σd̃+j

) − E(µd−i + 2σd−i )

=E((µd̃+j
+ 2σd̃+j

) − (µd−i + 2σd−i ))

=E
(

1
Nd̃+j

( m∑
k=1

wkµ fk Zk + wd̃+j
µ̂d̃+j
+ 2

√√ m∑
k=1

w2
kσ

2
fk Zk + w2

d̃+j
σ̂2

d̃+j

)
−

1
Nd−i

( m∑
k=1

wkµ fk Zk + wd−i µ̂d−i + 2

√√ m∑
k=1

w2
kσ

2
fk Zk + w2

d−i
σ̂2

d−i

))

=E
(

1
Nd̃+j

( m∑
k=1

wkµ fk Zk + wd̃+j
µ̂d̃+j
+ 2

√√ m∑
k=1

w2
kσ

2
fk Zk + w2

d̃+j
σ̂2

d̃+j
−

m∑
k=1

wkµ fk Zk − wd−i µ̂d−i − 2

√√ m∑
k=1

w2
kσ

2
fk Zk + w2

d−i
σ̂2

d−i

))

=E
(

1
Nd̃+j

(
wd̃+j
µ̂d̃+j
− wd−i µ̂d−i + 2

[√√ m∑
k=1

w2
kσ

2
fk Zk + w2

d̃+j
σ̂2

d̃+j
−

√√ m∑
k=1

w2
kσ

2
fk Zk + w2

d−i
σ̂2

d−i

]))
· · · (S 3)

If wd̃+j
σ̂d̃+j
< wd−i σ̂d−i , then

S 3 ≤ E
( 1
Nd̃+j

(
wd̃+j
µ̂d̃+j
− wd−i µ̂d−i

))
.

If wd̃+j
σ̂d̃+j
≥ wd−i σ̂d−i , then

S 3 ≤ E
(

1
Nd̃+j

(
wd̃+j
µ̂d̃+j
− wd−i µ̂d−i + 2

[√
w2

d̃+j
σ̂2

d̃+j
−

√
w2

d−i
σ̂2

d−i

]))
· · · (S 4)

= E
(wd̃+j

Nd̃+j

(
µ̂d̃+j
+ 2σ̂d̃+j

))
− E

(wd−i

Nd̃+j

(
µ̂d−i + 2σ̂d−i )

))
From step S 3 to step S 4, we apply the rule that if a ≥ 0, b ≥ 0, c ≥ 0 and b ≥ c, then

√
a + b −

√
a + c ≤

√
b −
√

c.

For simplicity of presentation, we denote the normalization of
wd̃+j

Nd̃+j

by wd̃+j
, and similarly, the normalized wd−i . Hence,

we have
∆C+ ≤ max

{
E(wd̃+j

(µ̂d̃+j
+ 2σ̂d̃+j

)) − E(wd−i (µ̂d−i + 2σ̂d−i )),E(wd̃+j
µ̂d̃+j

) − E(wd−i µ̂d−i )
}
,

where the µ̂∗ and σ̂∗ denote the DNN output probability and its corresponding standard deviation respectively, w∗
denotes the learned weight of DNN risk feature.510
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