
Aspect-Level Sentiment Analysis based on Gradual Machine Learning

Yanyan Wang, Qun Chen, Jiquan Shen, Boyi Hou, Murtadha Ahmed, Zhanhuai Li

School of Computer Science, Northwestern Polytechnical University

Key Laboratory of Big Data Storage and Management, Northwestern Polytechnical University, Ministry of Industry and Information Technology,
Xi’an Shaanxi, P.R.China

Abstract

The state-of-the-art solutions for Aspect-Level Sentiment Analysis (ALSA) were built on a variety of Deep Neural
Networks (DNN), whose efficacy depends on large quantities of accurately labeled training data. Unfortunately,
high-quality labeled training data usually require expensive manual work, thus may not be readily available in real
scenarios. In this paper, we propose a novel approach for aspect-level sentiment analysis based on the recently
proposed paradigm of Gradual Machine Learning (GML), which can enable accurate machine labeling without the
requirement for manual labeling effort. It begins with some easy instances in a task, which can be automatically
labeled by the machine with high accuracy, and then gradually labels the more challenging instances by iterative
factor graph inference. In the process of gradual machine learning, the hard instances are gradually labeled in small
stages based on the estimated evidential certainty provided by the labeled easier instances. Our extensive experiments
on the benchmark datasets have shown that the performance of the proposed solution is considerably better than its
unsupervised alternatives, and also highly competitive compared with the state-of-the-art supervised DNN models.

Keywords: Gradual machine learning, Factor graph inference, Aspect-level sentiment analysis

1. Introduction

Aspect-Level Sentiment Analysis (ALSA) [1], a fine-grained classification task, is highly valuable to both con-
sumers and companies because it can provide them with detailed opinions expressed towards certain aspects of an
entity. The task of ALSA has been classified into two finer subtasks, Aspect-Term Sentiment Analysis (ATSA) and
Aspect-Category Sentiment Analysis (ACSA) [2]. ATSA aims to predict the sentiment polarity associated with an5

explicit aspect term appearing in the text. ACSA instead deals with both explicit and implicit aspects. It needs to
predict the sentiment polarities of all the pre-specified aspects in a review, even though an aspect term may not ex-
plicitly appear in the text. For instance, consider the running example shown in Table 1, in which ri and si j denote the
review and sentence identifiers respectively. The review r2 expresses the opinions about a laptop from two aspects,
battery and performance. The goal of ATSA is to predict the sentiment polarity toward the explicit aspect battery;10

while ACSA has to identify the aspect polarities of both battery and performance even though the aspect term of
performance does not appear in the text. In this paper, we target both ATSA and ACSA.

The state-of-the-art techniques for aspect-level sentiment analysis have been built on a variety of DNN models [2,
3, 4]. Compared with previous learning models [5, 6], the DNN models can effectively improve classification accuracy
by automatically learning multiple levels of representation from data. However, their efficacy depends heavily on15

large quantities of accurately labeled training data. Unfortunately, high-quality labeled data usually require expensive
manual work, thus may not be readily available in real scenarios. To address this limitation, this paper presents
a novel solution based on the recently proposed paradigm of Gradual Machine Learning (GML) [7, 8], which can
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Table 1: A running example from laptop reviews.

ri si j Text

r1
s11 I like the battery that can last long time.
s12 However, the keyboard sits a little far back for me.

r2
s21 The laptop has a long battery life.
s22 It also can run my games smoothly.

enable accurate machine labeling without the requirement for manual labeling effort. Inspired by the gradual nature of
human learning, which is adept at solving problems with increasing hardness, GML begins with some easy instances20

in a task, which can be automatically labeled by the machine with high accuracy, and then gradually reasons about
the labels of the more challenging instances based on the observations provided by the labeled easier instances. The
general paradigm of GML consists of three steps: easy instance labeling, feature extraction and influence modeling,
and finally gradual inference. GML has been successfully applied to the problem of entity resolution [8]. It has been
empirically shown that GML performs considerably better than its unsupervised alternatives; its performance is even25

highly competitive compared with the state-of-the-art DNN solution.
As pointed out in [7, 8], even though there already exist many learning paradigms, including transfer learning [9],

lifelong learning [10], curriculum learning [11], and self-training learning [12] to name a few, GML is fundamentally
distinct from them due to its following two properties:

• Distribution misalignment between easy and hard instances in a task. The scenario of gradual machine learning30

does not satisfy the i.i.d (independent and identically distributed) assumption underlying most existing machine
learning models. In GML, the labeled easy instances are not representative of the unlabeled hard instances. The
distribution misalignment between the labeled and unlabeled instances renders most existing learning models
unfit for gradual machine learning.

• Gradual learning by small stages in a task. Gradual machine learning proceeds in small stages. At each stage,35

it typically labels only one instance based on the evidential certainty provided by the labeled easier instances.
The process of iterative labeling can be performed in an unsupervised manner without any human intervention.

We summarize the major contributions of this paper as follows:

• We propose a novel approach for aspect-level sentiment analysis based on the paradigm of gradual machine
learning. It can achieve accurate machine labeling without the requirement for manual labeling effort.40

• We present a package solution to enable effective gradual learning on ALSA, which include the techniques for
easy instance labeling, feature extraction and influence modeling, and scalable gradual inference.

• We have empirically evaluated the performance of the proposed solution by a comparative study on benchmark
data. Our extensive experiments have shown that its performance is considerably better than its unsupervised
alternatives, and also highly competitive compared with the state-of-the-art supervised DNN models. Moreover,45

the GML solution is robust in that its performance is, to a large extent, insensitive to algorithmic parameters.

The rest of this paper is organized as follows: Section 2 reviews related work. Section 3 defines the task of ALSA
and provides a paradigm overview of gradual machine learning. Section 4 describes the technical solution for ALSA.
Section 5 presents the scalable solution of gradual inference. Section 6 empirically evaluates the performance of the
proposed solution. Finally, we conclude this paper with Section 7.50

2. Related work

In this section, we first review the existing machine learning paradigms, and then discuss the existing work on
sentiment analysis with the focus on aspect-level sentiment analysis.
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2.1. Machine Learning Paradigms.

We first proposed the paradigm of gradual machine learning and applied it to the task of entity resolution in [7, 8].55

There exist many other machine learning paradigms proposed for a wide variety of classification tasks. Here we will
briefly review those closely related to GML and discuss their difference from GML.

Traditional machine learning algorithms make predictions on the future data using the statistical models that are
trained on previously collected labeled or unlabeled training data [13, 14, 15, 16]. In many real scenarios, the labeled
data may be too few to build a good classifier. Semi-supervised learning [17, 18] addresses this problem by making use60

of a large amount of unlabeled data and a small amount of labeled data. Nevertheless, the efficacy of both supervised
and semi-supervised learning paradigms depends on the i.i.d assumption. Therefore, they can not be applied to the
scenario of gradual machine learning.

In contrast, transfer learning [9], allows the distributions of the data used in training and testing to be different. It
focused on using the labeled training data in a domain to help learning in another target domain. The other learning65

techniques closely related to transfer learning include lifelong learning [10] and multi-task learning [19]. Lifelong
learning is similar to transfer learning in that it also focused on leveraging the experience gained on the past tasks for
the current task. However, different from transfer learning, it usually assumes that the current task has good training
data, and aims to further improve the learning using both the target domain training data and the knowledge gained
in past learning. Multi-task learning instead tries to learn multiple tasks simultaneously even when they are different.70

A typical approach for multi-task learning is to uncover the pivot features shared among multiple tasks. However,
all these learning paradigms can not be applied to the scenario of gradual machine learning. Firstly, focusing on
unsupervised learning within a task, gradual machine learning does not enjoy the access to good labeled training data
or a well-trained classifier to kick-start learning. Secondly, the existing techniques transfer instances or knowledge
between tasks in a batch manner. As a result, they do not support gradual learning by small stages within a task.75

The other related machine learning paradigms include curriculum learning (CL) [11] and self-paced learning
(SPL) [20]. Both of them are, to some extent, similar to gradual machine learning in that they were also inspired by
the learning principle underlying the cognitive process in humans, which generally start with learning easier aspects
of a task, and then gradually takes more complex examples into consideration. However, both of them depend on a
curriculum, which is a sequence of training samples essentially corresponding to a list of samples ranked in ascending80

order of learning difficulty. A major disparity between them lies in the derivation of the curriculum. In CL, the
curriculum is assumed to be given by an oracle beforehand, and remains fixed thereafter. In SPL, the curriculum
is instead dynamically generated by the learner itself, according to what the learner has already learned. Based on
the traditional learning models, both CL and SPL depend on the i.i.d assumption and require good-coverage training
examples for their efficacy. However, the scenario of gradual machine learning does not satisfy the i.i.d assumption.85

GML actually aims to eliminate the dependency on good-coverage training data.
Online learning [21] and incremental learning [22] have also been proposed for the scenarios where training data

only becomes available gradually over time or its size is out of system memory limit. Built on the traditional learning
models, both of them depend on high-quality training data for their efficacy. Therefore, they can not be applied for
gradual learning either.90

2.2. Sentiment Analysis

In general, sentiment analysis involves various tasks, such as polarity classification, subjectivity or objectivity
identification, and multimodal fusion [23]. In this paper, we focus on the essential task of polarity classification.
Sentiment analysis at different granularity levels, including document, sentence, and aspect, has been extensively
studied in the literature [24]. At the document (resp. sentence) level, its goal is to detect the polarity of the entire95

document (resp. sentence) without regard to the mentioned aspects. The state-of-the-art solutions have been built
based on deep neural networks (e.g. CNN and RNN), which include Character-level Convolutional Networks [25],
Deep Pyramid Convolutional Neural Networks [26] and Linguistically Regularized LSTM [27]. There also exist
some semi-supervised approaches for the particular problem of social data analysis [28], for which the acquisition
of labeled data often requires a costly process that involves skilled experts whereas the acquisition of unlabeled ones100

is relatively inexpensive. Specifically, Silva [29] proposed a semi-supervised learning framework that can effectively
leverage the unsupervised information captured by a similarity matrix, which is constructed based on unlabeled data,
in classifier training. Hussain [30] also presented a combined model of random projection and support vector machine.

3



Unfortunately, all these proposals can not be directly applied to aspect-level sentiment analysis because a sentence
may hold different opinions on different aspects. Moreover, their efficacy depends on the availability of large quantities105

of labeled training data.
Since deep neural networks can automatically learn high-quality features or representations, most recent work

attempted to adapt such models for aspect-level sentiment analysis. We discuss the work for ATSA and ACSA sepa-
rately. For the ATSA task, Dong [31] proposed an Adaptive Recursive Neural Network (AdaRNN) that employed a
novel multi-compositionality layer to propagate the sentiments of words towards the target. Noticing that the models110

based on recursive neural network heavily rely on external syntactic parser, which may result in inferior performance,
many researchers subsequently focused on recurrent neural networks. Tang [32] proposed a target-dependent LSTM
(TD-LSTM) model to capture the connection between target words and their contexts. The alternative solutions in-
clude the memory networks and the convolutional neural networks. Wang [33] proposed a Target-sensitive Memory
Network that aimed to capture the sentiment interaction between targets and contexts. Li [34] presented a Trans-115

formation Network that employed a CNN layer to extract salient features from the transformed word representations
originated from a bi-directional RNN layer. Due to the great success of attention mechanism in image recognition [35],
speech recognition [36], machine translation [37, 38] and question answering [39], many attention-based models have
also been proposed for ATSA. These models, including Hierarchical Attention Network [40], Segmentation Atten-
tion Network [41], Interactive Attention Networks [42], Recurrent Attention Network [43], Attention-over-Attention120

Neural Networks [44], Effective Attention Modeling [45], Content Attention Model [46], Multi-grained Attention
Network [47] and Sentic LSTM [48], employed different attention mechanisms to output the aspect-specific senti-
ment features. It is noteworthy that Sentic LSTM [48] specifically focused on leveraging commonsense knowledge
in the deep neural sequential model. More recently, some researchers investigated how to leverage the BERT model
for ATSA. Song [49] proposed an Attentional Encoder Network (AEN) which employed the pretrained BERT and125

the attention-based encoders. Zeng [50] presented a Local Context Focus (LCF) mechanism based on Multi-head
Self-Attention (MHSA), and adopted a BERT-shared layer in its LCF design.

In comparison, there exist fewer proposals for ACSA because implicit aspects make polarity detection more chal-
lenging. Ruder [4] proposed a hierarchical bidirectional LSTM for ACSA by modeling the inter-dependencies of
sentences in a review. Wang [3] presented an attention-based LSTM that employed an aspect-to-sentence attention130

mechanism to concentrate on the key part of a sentence given an aspect. Xue [2] introduced a convolutional neural
network augmented with gating mechanisms, which was empirically shown to be more accurate and efficient com-
pared with its previous alternatives. It is worthy to point out that the DNN models proposed for ACSA can also be
used for ATSA, but the models proposed for ATSA are usually not applicable to ACSA because they employ specific
mechanisms to model an explicit aspect term along with its relative context. However, the efficacy of the existing135

DNN-based approaches for ATSA and ACSA depends heavily on good-coverage training data, which may not be
readily available in real scenarios.

There also exist some work for semi-supervised aspect-level sentiment classification. Cheng [51] employed the
Variational Autoencoder based on Transformer to effectively improve the performance of supervised DNN models for
ATSA. Wang [52, 53] presented a joint framework, SenHint, which can seamlessly integrate the output of deep neural140

networks and the implications of linguistic hints in a unified model of factor graph. Similar to GML, SenHint also
identifies easy instances, and leverages the extracted features to improve the accuracy of polarity reasoning. However,
SenHint labels all the hard instances simultaneously in a single iteration, and its efficacy depends heavily on the output
of DNN models. In comparison, GML gradually labels hard instances in small stages based on the evidential certainty
provided by labeled easier instances. Typically, GML runs in many iterations, and in each iteration, it labels one and145

only one hard instance. Moreover, the GML solution proposed in this paper does not require any manually labeled
data.

Finally, it is worthy to point out that word polarity disambiguation is an important problem in sentiment analysis,
whose main challenge is to resolve the polarity of the sentiment-ambiguous words in different contexts. Recently,
Xia [54] proposed a Bayesian model for opinion-level features to solve the problem of polarity disambiguation.150

Rafeek [55] presented a new approach of Bayesian Network Based Contextual Polarity Disambiguation (BbNCPD)
to resolve the polarities of context-dependent opinion words. Their empirical studies have shown that these solutions
can effectively improve the accuracy of polarity detection.
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Table 2: Frequently used notations.

Notation Description
r j a review
sk a sentence
al an aspect category or aspect term
ti = (r j, sk, al) an aspect unit
T = {ti} a set of aspect units
vi a boolean variable indicating the polarity of the aspect unit ti
V = {vi} a set of aspect polarity variables

3. Preliminaries

In this section, we first define the task of aspect-level sentiment analysis, and then provide a paradigm overview155

of gradual machine learning.

3.1. Task Statement

For presentation simplicity, we have summarized the frequently used notations in Table 2. Formally, we formulate
the task of aspect-level sentiment analysis as follows:

Definition 1. [Aspect-level Sentiment Analysis] Let ti = (r j, sk, al) be an aspect unit, where r j denotes a review, sk160

denotes a sentence in the review r j, and al denotes an aspect associated with the sentence sk. Note that the aspect al

can be an aspect category or aspect term, and a sentence may express opinions towards multiple aspects. Given a
corpus of reviews, R, the goal of the task is to predict the sentiment polarity of each aspect unit ti in R.

In this paper, we suppose that an aspect polarity is either positive or negative.

3.2. Paradigm Overview165

As presented in [7, 8], the paradigm of gradual machine learning, which has been shown in Figure 1, consists of
the following three steps:

• Easy Instance Labeling. Given a classification task, it is usually very challenging to accurately label all the
instances in the task without good-coverage training examples. However, the work can become much easier if
we only need to automatically label some easy instances in the task. In real scenarios, easy instance labeling170

can be performed based on the simple user-specified rules or the existing unsupervised learning techniques.
For instance, in unsupervised clustering, an instance close to a cluster center in the feature space can usually
be considered as an easy instance, because it has only a remote chance to be misclassified. Gradual machine
learning begins with the label observations of easy instances. Therefore, high accuracy of automatic easy
instance labeling is critical for GML’s ultimate performance.175

• Feature Extraction and Influence Modeling. In GML, feature serves as the medium to convey the knowledge
obtained from labeled easy instances to unlabeled harder ones. This step extracts the common features shared
by the labeled and unlabeled instances. To facilitate effective knowledge conveyance, it is desirable that a wide
variety of features are extracted to capture as much information as possible. For each extracted feature, this step
also needs to model its influence over the labels of its relevant instances.180

• Gradual Inference. This step gradually labels the instances with increasing hardness in a task. Since the sce-
nario of gradual learning does not satisfy the i.i.d assumption, gradual learning is fulfilled from the perspective
of evidential certainty. As shown in Figure 1, it constructs a factor graph, which consists of the labeled and
unlabeled instances and their common features. Gradual learning is conducted over the factor graph by iterative
inference. At each iteration, it chooses to label the unlabeled instance with the highest degree of evidential185
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Figure 1: Learning paradigm overview.

certainty. The iteration is repeatedly invoked until all the instances in a task are labeled. In gradual inference, a
newly labeled instance at the current iteration would serve as an evidence observation in the following iterations.

Formally, we denote the model of factor graph corresponding to a classification workload by G. Suppose that
G consists of a set of evidence variables Λ, whose labels are known, a set of inference variables VI, whose
labels are unknown, and a group of factor functions of variables to indicate the probabilistic relations among190

the variables, denoted by Fθ(Vi) : Vi → Pθ(Vi), in which Vi denotes a set of variables and Vi ∈ PowerSet(Λ∪VI).

In each iteration, GML generally chooses to label the inference variable in VI with the highest degree of eviden-
tial certainty. Suppose that the total number of label types, denoted by {T1,T2, . . . ,Tt}, is t. Given an inference
variable v, GML measures its evidential certainty by the inverse of entropy as follows

E(v) =
1

H(v)
=

1
−
∑

1≤i≤t
Pi(v) · log2Pi(v)

, (1)

in which E(v) and H(v) denote the evidential certainty and entropy of v respectively, and Pi(v) denotes the
inferred probability of v having the label of Ti.

4. Solution for ALSA

This section presents the solution of gradual machine learning for ALSA, which include the corresponding tech-195

niques for the three steps laid out in Subsection 3.2.

4.1. Easy Instance Labeling
The existing lexicon-based approaches [56] essentially reason about polarity by summing up the polarity scores

of all the sentiment words in a sentence. The score of a sentiment word indicates its intensity of sentiment, which is
supposed to increase with the absolute value of score. Since a negation word can effectively reverse the polarity of a200

sentiment word, they usually perform negation detection for each sentiment word by examining whether there is any
negation in its neighboring words [57].
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Unfortunately, the lexicon-based approaches are prone to making mistakes under some ambiguous circumstances.
Firstly, the presence of contrast (e.g. but and although), hypothetical (e.g. if ) or condition (e.g. unless) connectives
could significantly complicate polarity detection. For instance, the sentence, “would be a very nice laptop if the205

mousepad worked properly”, contains only the positive sentiment words “nice” and “properly”, but it holds negative
attitude due to the presence of the hypothetical connective “if”. Secondly, the negation words involving long-distance
dependency could also make polarity detection challenging. For instance, in the sentence, “I don’t really think the
laptop has a good battery life”, the negation word “don’t” reverses the polarity, but it is far away from the sentiment
word “good”. Finally, a sentence may contain multiple sentiment words that hold conflicting polarities; in this case,210

its true polarity is not easily detectable based on sentiment word scoring.
Therefore, as originally proposed in [53], we identify easy instances by excluding the aforementioned ambiguous

circumstances as follows:

Definition 2. [Easy Instance] We consider an aspect polarity, ti = (r j, sk, al), as an easy instance if and only if the
sentence expressing opinions about the aspect, sk, simultaneously satisfies the following three conditions:215

• It contains at least one sentiment word, but does not simultaneously contain any sentiment word holding a
conflicting polarity;

• It does not contain any contrast, hypothetical or condition connective;

• It does not contain any negation word involving long-distance dependency.

The polarity of an easy instance is simply determined by the polarity of its sentiment words. Moreover, a negation220

word is supposed to involve long-distance dependency if and only if it is not in the 3-gram preceding any sentiment
word. We illustrate the difference between the easy and challenging instances by Example 1.

Example 1. [Easy Instances] In a phone review, the sentence, “the screen is not good for carrying around in your
bare hands”, which expresses opinion about “screen”, is an easy instance because the sentiment word “good” asso-
ciated with the local negation cue “not” strongly indicates the negative sentiment. In contrast, the sentence, “I don’t225

know why anyone would want to write a great review about this battery”, which expresses opinion about “battery”, is
not an easy instance. Even though it contains the sentiment word “great”, it also includes the negation word “don’t”
involving long-distance dependency. Similarly, the sentence, “I like this laptop, the only problem is that it can not last
long time”, is not an easy instance because it contains both positive and negative words, i.e. “like” and “problem”
respectively.230

4.2. Feature Extraction and Influence Modeling

We extract two types of features for influence modeling: word feature and relational feature.

Word Feature. Sentiment polarity is usually determined by sentiment words. Therefore, we extract sentiment words,
which have been specified in the open-source lexicons, from sentences and consider them as the features of aspect
polarities. To capture more information shared among aspect instances, besides the single sentiment words, we also235

extract k-grams (k ≥ 2) as word features. Since word context (e.g. negation and subjunctive) can effectively alter the
polarity of an opinion word, we thus perform context detection for each word feature by examining whether there is
any negation or subjunctive word in its neighborhood.

In ALSA, a sentence may express opinions towards multiple aspects. Therefore, we need to associate each
sentiment feature with its target aspect. For this purpose, we first use the technique proposed in [58] to extract240

opinion phrases. It leverages the patterns based on dependency relations [59] for phrase extraction. The typical
patterns include: 1) adjective modifier: amod(N, A) →< N, A > (e.g. in the sentence “great camera”, we have
amod(camera, great) →< camera, great > ); 2) joint clausal complement and nominal subject: acomp(N, A) +

nsub j(V,N) →< N, A >(e.g. in the sentence “the camera looks beautiful”, we have acomp(camera, beauti f ul) +

nsub j(looks, camera)→< camera, beauti f ul >); 3) joint direct object and nominal subject: dob j(V,N)+nsub j(V,N′)245

→< N,V >(e.g. in the sentence “i like this keyboard”, we have dob j(like, keyboard) + nsub j(like, I)→< keyboard,
like >). Please refer to [58] for more details.
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Figure 2: The factor graph constructed for the running example.

Next, we associate sentiment features with their target aspects based on the extracted opinion phrases. In the case
of ATSA, it is easy to correlate a opinion word (corresponding to a sentiment feature) in a sentence with its target
aspect because the aspect term explicitly appears in the text. In the case of ACSA, we assign an opinion word to an250

aspect if and only if either its opinion target or the opinion word itself is close to the aspect term in the vector space
(namely, their similarity exceeds a threshold (e.g. 0.5 in our implementation)).

Relational Feature. Modeling sentences independently, the existing DNN models for aspect-level sentiment analysis
have very limited capability in capturing the contextual information at sentence level. However, the sentences in a
review build upon each other. There often exist some discourse relations between clauses or sentences, which can255

provide valuable hints for polarity reasoning. Specifically, it can be observed that two sentences connected with a
shift word usually have opposite polarities. In contrast, two neighboring sentences without any shift word between
them usually have similar polarities. In the running example shown in Table 1, the polarities of s11 and s12 are opposite
because they are connected by the shift word of “but”, while the polarities of s21 and s22 are similar due to the absence
of any shift word between them.260

Therefore, as originally proposed in [53], we use the rules to extract the similar or opposite relation between
two aspect units based on their sentence context. Given two aspect units ti = {ri, si, ai} and t j = {r j, s j, a j} that are
opinioned in the same review (namely ri = r j), the rules for polarity relation extraction are specified as follows:

1. If the sentences si and s j are identical (si=s j) or adjacent and neither of them contains any shift word, ti and t j

are supposed to hold similar polarities;265

2. If two adjacent sentences si and s j are connected by a shift word and neither of them contains any inner-sentence
shift word, ti and t j are supposed to hold opposite polarities;

3. If the sentences si and s j are identical and the opinion clauses associated with them are connected by an inner-
sentence shift word, ti and t j are supposed to hold opposite polarities.

Given an ATSA task, it is easy to correlate an opinion clause with its target aspect because the aspect term270

explicitly appears in the text. Therefore, the condition specified in the 3rd rule can be easily checked in the scenario of
ATSA. The scenario of ACSA is instead more challenging. Our solution first uses the dependency-based parse tree to
extract all the opinion phrases, and then associates an opinion clause with a specific aspect if either its opinion target
or opinion word is close to the aspect in the vector space.

4.3. Gradual Inference275

As usual, we construct a factor graph, G, in which the labeled easy instances are represented by the evidence
variables, the unlabeled hard instances by the inference variables, and the features by the factors. The value of each
variable represents its corresponding polarity. An evidence variable has the constant value of 0 or 1, which indicate
the polarity of negative and positive respectively. The values of the evidence variables remain unchanged during the
inference process. The values of the inference variables should instead be inferred based on G. The factor graph280

constructed for the running example has been shown in Figure 2.
Gradual machine learning is attained by iterative factor graph inference on G. In G, we define the probability

distribution over its variables V by

Pw(V) =
1

Zw

∏
v∈V

∏
f∈Fv

φ f (v)
∏
f ′∈F′

φ f ′ (vi, v j), (2)
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where Fv denotes the set of word features associated with the variable v, F′ denotes the set of relational features, φ f (v)
denotes the factor associated with v and f , and φ f ′ (vi, v j) denotes the factor associated with the relational feature f ′.
In Eq. 2, the factor of a word feature f is defined by

φ f (v) =

{
1 v = 0;
ew f v = 1; (3)

where v denotes a variable having the feature f , and w f denotes the weight of f . Similarly, the factor of a relational
feature f ′ is defined by

φ f ′ (vi, v j) =

{
ew f ′ i f vi = v j;
1 otherwise; (4)

where vi and v j denote the two variables sharing the feature f ′, and w f ′ denotes the weight of f ′. Note that the weight
of a word factor can be positive or negative, while the weight of a similar relational factor is positive and the weight
of an opposite relational factor is negative. In our implementation, the weights of all the similar relational factors are
set to be the same; the weights of all the opposite relational factors are also set to be the same.285

As in [7], given a factor graph with some labeled evidence variables, we reason about the factor weights by
minimizing the negative log marginal likelihood of

ŵ = arg min
w
−log

∑
VI

Pw(Λ,VI), (5)

where Λ denotes the observed labels of evidence variables and VI denotes the set of inference variables. The objective
function effectively learns the factor weights most consistent with the label observations of evidence variables. In our
implementation, we have used the Numbskull library 1 to optimize this objective function by interleaving stochastic
gradient descent steps with Gibbs sampling ones, similar to contrastive divergence.

As usual, gradual inference proceeds in small stages. At each stage, it chooses to label the unlabeled variable with
the highest degree of evidential certainty in G. The iteration is repeatedly invoked until all the inference variables are
labeled. In gradual inference, evidential certainty is measured by the inverse of entropy. In the case of ALSA, entropy
is formally defined by

H(v) = −(P(v) · lnP(v) + (1 − P(v)) · ln(1 − P(v))), (6)

in which H(v) denotes the entropy of a variable v, and P(v) denotes the inferred probability of v.290

In gradual inference, only the inference variables receiving considerable evidential support from labeled instances
need to be considered for labeling. In the next section, we will present a scalable solution for gradual inference on
ALSA.

5. Scalable Gradual Inference

We have built the scalable solution based on the framework proposed in [8], which consists of three steps, mea-295

surement of evidential support, approximate ranking of entropy and construction of inference subgraph. The process
of scalable gradual inference is sketched in Algorithm 1. Given a factor graph G, it first selects the top-m unlabeled
variables with the most evidential support in G as the candidates for probability inference. To reduce the invocation
frequency of factor graph inference, it then approximates entropy estimation by an efficient algorithm on the m candi-
dates and selects only the top-k most promising variables among them for factor graph inference. Finally, it infers the300

probabilities of the chosen k variables in G. For each variable, its probability is not inferred over the entire graph of
G, but over a potentially much smaller subgraph.

1https://github.com/HazyResearch/numbskull

9



Algorithm 1: Scalable Gradual Inference

1 while there exists any unlabeled variable in G do
2 V ′ ← all the unlabeled variables in G;
3 for v ∈ V ′ do
4 Measure the evidential support of v in G;

5 Select top-m unlabeled variables with the most evidential support (denoted by Vm) ;
6 for v ∈ Vm do
7 Approximately rank the entropy of v in Vm;

8 Select top-k most promising variables in terms of entropy in Vm (denoted by Vk) ;
9 for v ∈ Vk do

10 Compute the probability of v in G by factor graph inference over a subgraph of G;

11 Label the variable with the minimal entropy in Vk;

5.1. Measurement of Evidential Support

Here we first introduce the Dempster–Shafer (D-S) theory [60], the classical framework for evidential support
estimation, and then describe how to leverage it for evidential support measurement.305

The D-S theory, also known as evidence theory, is a general framework for reasoning with uncertainty. It allows
one to combine the beliefs from different evidence sources and arrive at a degree of belief that takes into account all
the available evidences. The basic concepts involved in the D-S theory are described as follows:

• Propositions. Denoted by X, it represents all possible states of a situation under consideration.

• Power set of propositions. Denoted by 2X , it includes all of the subsets of the propositions.310

• Belief function. Denoted by m(·), it assigns a degree of belief (or mass) to each element E of the power set 2X .
The masses of elements satisfy

∑
E∈2X m(E) = 1 and m(∅) = 0. In case that only singleton propositions are

assigned degrees of belief, a belief function reduces to a classical probability function.

• Belief combining rules. It aims to combine degrees of belief indicated by independent evidence sources with
various fusion operators. The popular fusion operator is Dempster’s rule of combination, which derives common315

shared belief between multiple sources and ignores all the conflicting (non-shared) belief through a normaliza-
tion factor.

Given an inference variable v, the purpose is to estimate its overall evidential support in terms of labeling. It can
be observed that 1) various features (e.g. word features and relational features) can be considered as different evidence
sources providing hints for labeling; 2) each feature has some inherent uncertainty when indicating label status.320

We first define two propositions: “label the instance”, denoted by L, and “unlabel the instance”, denoted by U.
With X = {L,U}, the power set of X can be represented by 2X = {∅, L,U, X}. Then, we define different belief functions
for various evidences (namely word features and relational features). Given an inference variable v and its word
feature f , we estimate the evidential support that v receives from f by the belief function

m f (E) =


(1 − d f ) · max{P( f ), 1 − P( f )} E = {L},
(1 − d f ) · min{P( f ), 1 − P( f )} E = {U},
d f E = {L,U},

(7)

where d f denotes the degree of uncertainty of f , and P( f ) denotes the proportion of positive instances among all
labeled instances having the feature f . According to Eq. 7, the belief assigned to the element of {L} increases as the
value of P( f ) becomes more extreme (i.e. close to 0 or 1). The underlying intuition is that the more extreme the value
of P( f ) is, the more evidential support the element of {L} should receive from the feature f .
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Similarly, given an inference variable v and its relational feature f ′, we estimate the evidential support that v
receives from f ′ by the belief function

m f ′ (E) =


(1 − d f ′ ) · R( f ′) E = {L},
(1 − d f ′ ) · (1 − R( f ′)) E = {U},
d f ′ E = {L,U},

(8)

where d f ′ denotes the degree of uncertainty of f ′, and R( f ′) denotes the accuracy of the relation f ′. In Eq. 8, R( f ′) can325

be considered as the statistical accuracy of the extracted relations, which can be estimated based on labeled instances;
the evidential support that the element of {L} receives from f ′ thus increases with the estimated accuracy.

We are now ready to describe how to measure the aggregate evidential support provided by multiple features.
Suppose that an inference variable v has i word features, { f1,. . ., fi}, and j relational features, { f ′1 ,. . ., f ′j }. Given the
element of E = {L}, we estimate its aggregate evident support by combining the estimated beliefs as follows

m(E) = m f1 (E) ⊕ · · · ⊕ m fi (E) ⊕ m f ′1 (E) ⊕ · · · ⊕ m f ′j (E), (9)

where m(E) denotes the total amount of evidential support that v receives, and the combination is calculated from the
two sets of mass functions, m f1 (E) and m f2 (E), as follows

m f1 (E) ⊕ m f2 (E) =
1

1 − K

∑
E′∩E′′=E

m f1 (E′) · m f2 (E′′), (10)

where E′ and E′′ denote the elements of the power set, and

K =
∑

E′∩E′′=∅

m f1 (E′) · m f2 (E′′), (11)

which is a measure of the amount of conflict between E′ and E′′.
Note that the degree of uncertainty, denoted by d f and d f ′ in Eq. 7 and 8, indicates how much impact a feature has

on the whole degree of belief in terms of evidential support measurement. The lower the value, the greater the impact.330

It can be observed that relational features usually provide more reliable information than word features. Therefore,
in practical implementation, we suggest that d f ′ is set to be smaller than d f (e.g., d f = 0.4 and d f ′ = 0.1). Our
empirical evaluation in Subsection 6.4 has shown that the performance of gradual machine learning is, to a large
extent, insensitive to the parameter setting of d f and d f ′ .

On time complexity, each iteration takes O(n × n f ) time, in which n denotes the total number of instances in a335

task, and n f denotes the total number of extracted features. Therefore, the time complexity of evidential support
measurement can be represented by O(n2 × n f ).

5.2. Approximate Ranking of Entropy
Since more evidential conflict means more status uncertainty, we approximate the entropy ranking of inference

variables by measuring their evidential conflict. Specifically, we define two propositions: “label it as positive”, denoted
by L+, and “label it as negative”, denoted by L−. Given an inference variable v and its word feature f , we approximate
v’s evidential certainty w.r.t f with the belief function

m∗f (E) =


(1 − d∗f ) · P( f ) E = {L+},

(1 − d∗f ) · (1 − P( f )) E = {L−},
d∗f E = {L+, L−},

(12)

where d∗f denotes the degree of uncertainty of f , and P( f ) denotes the proportion of positive instances among all the
labeled instances having the feature f .340

Similarly, given an inference variable v and its relational feature f ′, we approximate v’s evidential certainty w.r.t
f ′ with the belief function

m∗f ′ (E) =


(1 − d∗f ′ ) · P( f ′) E = {L+},

(1 − d∗f ′ ) · (1 − P( f ′)) E = {L−},
d∗f ′ E = {L+, L−},

(13)
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where d∗f ′ denotes the degree of uncertainty of f ′, and P( f ′) denotes the probability of v being positive if only the
evidence f ′ is considered for labeling v. If the labeled variable on the other side of the relation f ′ is positive, we set
P( f ′) = ew f ′

1+ew f ′ , in which w f ′ denotes the weight of f ′; otherwise (i.e., it is negative), we set P( f ′) = 1
1+ew f ′ .

Finally, we measure the amount of conflict between the multiple pieces of evidence using the generalized expres-
sion of K as specified in Eq. 11. Similar to the case of evidential support measurement, we suggest that d∗f ′ is set to be345

a lower value than d∗f . Our empirical evaluation in Subsection 6.4 has shown that the performance of gradual machine
learning is, to a large extent, insensitive to the parameter setting of d∗f and d∗f ′ .

On time complexity, each iteration takes O(n f × m) time, in which n f denotes the total number of extracted
features and m denotes the number of candidate variables selected for approximate entropy estimation as specified in
Algorithm 1. Therefore, the time complexity of approximate entropy estimation can be represented by O(n× n f ×m).350

5.3. Construction of Inference Subgraph

It has been empirically shown [61] that given a variable v in G, its probability inference can be effectively approx-
imated by considering the subgraph consisting of v and its r-hop neighboring variables, and even with a small value
of r (e.g. 2 and 3), the approximation can be sufficiently accurate in many real scenarios. Therefore, given a target
inference variable v in G, we extract all its 2-hop neighbors reachable by the relational factors and include them in355

the subgraph. For each word feature of v, all the labeled and unlabeled instances sharing the feature with v are also
included in the constructed subgraph because potentially, their labels can significantly influence the label of v.

On time complexity, each iteration of subgraph construction takes O(n f × k) time, in which n f denotes the total
number of extracted features and k denotes the number of candidate variables selected for factor graph inference as
specified in Algorithm 1. Therefore, the time complexity of inference subgraph construction can be represented by360

O(n × n f × k).

6. Empirical Evaluation

In this section, we empirically evaluate the performance of the proposed solution by a comparative study. We
have compared GML with the state-of-the-art techniques proposed for both ACSA and ATSA. Note that the DNN
models proposed for ACSA can also be used for ATSA, but the models proposed for ATSA are usually not applicable365

to ACSA because they employ specific mechanisms to model an explicit aspect-term along with its relative context.
For the ACSA task, the compared techniques include:

• LEX-SYN [62]. It is an unsupervised approach built on lexicons and syntactic dependency analysis;

• VADER [57]. It is a rule-based method proposed for sentence-level sentiment analysis. We have adapted it for
the task of ALSA. Given a sentence with multiple aspects, the solution identifies the sentiment polarity of an370

aspect by analyzing its opinioned clause, whose extraction has been explained in Subsection 4.2.

• H-LSTM [4]. It is an enhanced DNN model. It models the inter-dependencies of sentences in a review using a
hierarchical bidirectional LSTM;

• AT-LSTM [3]. Referring to the Attention-based LSTM, it employs an attention mechanism to concentrate on
the key parts of a sentence given an aspect, where the aspect embeddings are used to determine the attention375

weights;

• ATAE-LSTM [3]. Referring to the Attention-based LSTM with Aspect Embedding, it is supposed to be an
improvement over AT-LSTM. It extends AT-LSTM by appending the input aspect embedding to each word’s
input vector;

• GCAE [2]. It uses convolutional neural networks and gating mechanisms to predict the sentiment polarity of a380

given aspect. Compared with the LSTM and attention mechanisms, it can be more accurate and efficient.

For the ATSA task, besides LEX-SYN, VADER, AT-LSTM, ATAE-LSTM and GCAE, the compared techniques
also include:

12



• IAN [42]. Referring to the interactive attention network, it models targets and contexts separately and learn
their own representations via interactive learning. By modeling targets and contexts separately, it can pay close385

attention to the important parts in the target and context;

• RAM [43]. It is a multiple-attention network where the features from multiple attentions are non-linearly
combined with a recurrent neural network. It can effectively capture sentiment features separated by a long
distance, and is usually more robust against irrelevant information;

• AOA [44]. Referring to the attention-over-attention network, it models aspect and sentence in a joint way and390

benefits from modeling the interaction among word-pairs between sentences and targets;

• TNet [34]. It is a target-specific transformation network that employs a CNN layer to extract salient features
from the transformed word representations originated from a RNN layer. It avoids using attention for feature
extraction so as to alleviate the attended noise.

• ASVAET [51]. It is a semi-supervised model, which can induce the underlying sentiment prediction for unla-395

beled data by disentangling the latent representation into the aspect-specific sentiment and the lexical context.
Since the model is classifier-agnostic, it can be built upon various DNN models(e.g. IAN, RAM, AOA, TNet).
In our empirical evaluation, we only report the results of ASVAET(IAN), which integrates IAN into ASVAET;
the results on other DNNs are quite similar, thus omitted in the paper.

Besides the aforementioned approaches, we have also compared GML with SenHint [53]. The original SenHint400

depends on the output of DNN models. For fair comparison, we have implemented a trimmed version of SenHint
without requiring DNN outputs. The trimmed SenHint first identifies some easy instances using the same technique
proposed for GML, and then leverages the extracted shared features for polarity reasoning. Note that unlike GML,
SenHint labels all the hard instances simultaneously in a single iteration. The rest of this section is organized as
follows: Subsection 6.1 describes the experimental setup. Subsection 6.2 presents the comparative evaluation re-405

sults. Subsection 6.3 evaluates the performance of easy instance labeling. Subsection 6.4 evaluates the performance
sensitivity of the proposed solution w.r.t various parameters. Finally, Subsection 6.5 evaluates the scalability of the
proposed solution.

6.1. Experimental Setup
In the empirical evaluation, we have used six benchmark datasets in four domains (phone, camera, laptop and410

restaurant) and two languages (English and Chinese) from the SemEval 2015 task 12 [63] and 2016 task 5 [64]. In
all the experiments, we perform 2-class classification to label an aspect polarity as positive or negative. Note that
the datasets of LAP16, RES16, LAP15 and RES15 contain some neutral instances, which are simply ignored in our
experiments. The statistics of the benchmark datasets are presented in Table 3, in which #N(ACSA) and #N(ATSA)
denote the numbers of aspect category units and aspect term units respectively. Note that aspect terms are not specified415

on these benchmark datasets. We have manually identified the aspect terms in LAP16, RES16, LAP15 and RES15
according to the annotation guideline 2.

For DNN models, we used the Glove embeddings 3 for English data, and the word embeddings from Baidu 4 for
Chinese data. We employed jieba 5 to tokenize Chinese sentences. In easy instance labeling and feature extraction
for GML, we used the open-source Opinion Lexicon 6 for English data, and the EmotionOntology 7 and BosonNLP 8

420

lexicons for Chinese data.
For DNN model training, we used the default ratio of train and test data provided in the benchmark. GML has

been instead directly run on the test data without leveraging any labeled training data. For easy instance identification,

2http://alt.qcri.org/semeval2014/task4/data/uploads/semeval14 absa annotationguidelines.pdf
3https://nlp.stanford.edu/projects/glove/
4http://pan.baidu.com/s/1jIb3yr8
5https://github.com/fxsjy/jieba
6https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html
7http://ir.dlut.edu.cn/EmotionOntologyDownload
8https://bosonnlp.com/dev/resource
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Table 3: Data statistics of benchmark datasets.

Data Language #N(ACSA) #N(ATSA)
Train Test Train Test

PHO16 Chinese 1333 529 — —
CAM16 Chinese 1259 481 — —
LAP16 English 2715 751 1702 479
RES16 English 2134 693 1711 592
LAP15 English 1864 868 1168 533
RES15 English 1410 725 1191 521

Table 4: Accuracy comparison for ACSA on benchmark datasets.

Model PHO16 CAM16 LAP16 RES16 LAP15 RES15
LEX-SYN 68.43% 78.17% 69.64% 76.77% 75.81% 75.31%
VADER – – 68.31% 75.18% 74.31% 75.59%
H-LSTM (73.30 ± 0.19) % (78.80± 0.60)% (77.68 ± 0.65)% (81.44± 0.39)% (79.03± 0.48)% (73.13± 1.26) %
AT-LSTM (73.27± 1.21)% (82.49± 0.58)% (76.32 ± 0.74) % (83.00± 0.43)% (79.03 ± 1.00)% (76.52 ± 1.51)%
ATAE-LSTM (72.40± 0.82)% (81.12± 0.70)% (77.90 ± 1.10) % (83.81± 1.08)% (79.88 ± 0.79)% (79.42 ± 1.07)%
GCAE (76.94± 0.48)% (82.12± 0.53)% (81.94 ± 0.40) % (86.44± 0.61)% (82.21 ± 0.51)% (79.81 ± 0.70)%
GML (76.14± 0.63)% (81.41± 0.25)% (79.84 ± 0.34) % (85.31 ± 0.06)% (83.94 ± 0.28)% (78.57 ± 0.48)%

the scores for the sentiment words in the Chinese lexicons are normalized into the range of [-4, 4], and we use the
sentiment words whose scores are at least 1. In our implementation of GML, the initial weights of word features,425

similar relational features and opposite relational features are set to 0, 2 and -2 respectively. In the process of scalable
gradual inference, if none of the unlabeled instances receives any evidential support from the labeled easier instances,
GML employs the existing unsupervised method of LEX-SYN [62] to label the remaining instances.

In the comparative study, we report the average and standard deviation of accuracy over ten runs. Our implemen-
tation codes of GML have been made open-source available 9.430

6.2. Comparative Evaluation

In the comparative study, we set m=20, k=3, d f =d∗f =0.4, and d f ′=d∗f ′=0.1 for GML. Our sensitivity evaluation in
Subsection 6.4 has shown that the performance of GML is, to a large extent, insensitive to the parameter setting.

The detailed evaluation results for ACSA and ATSA are presented in Table 4 and 5 respectively. Note that
VADER can not be directly applied on Chinese data, therefore we only report its performance on English data. The435

9https://chenbenben.org/gml.html

Table 5: Accuracy comparison for ATSA on benchmark datasets.

Model LAP16 RES16 LAP15 RES15
LEX-SYN 67.01% 79.90% 76.55% 75.82%
VADER 67.22% 79.39% 77.11% 78.50%
AT-LSTM (75.49 ± 1.22) % (88.11± 0.39)% (80.08 ± 0.87)% (76.99 ± 1.53)%
ATAE-LSTM (76.91 ± 0.50) % (85.44± 0.95)% (78.65 ± 0.64)% (74.98 ± 0.98)%
GCAE (80.21 ± 0.83)% (90.07± 0.47)% (80.26 ± 0.82)% (78.31 ± 0.64)%
IAN (78.04 ± 0.43) % (87.50± 0.44)% (79.43 ± 0.81)% (78.34 ± 1.02)%
RAM (80.21 ± 1.26) % (87.74 ± 0.45)% (80.49 ± 0.88)% (77.61 ± 1.04)%
AOA (78.04 ± 0.74) % (87.80 ± 0.47)% (81.13 ± 0.40)% (78.88 ± 0.58)%
TNet (79.16 ± 1.10) % (86.99± 0.49)% (79.06 ± 0.79)% (76.37 ± 0.89)%
ASVAET(IAN) (78.71 ±0.56 ) % (89.36 ±0.32 ) % (81.99 ± 0.64) % (78.96 ± 0.62) %
GML 80.13 ± 0.31 % (85.54 ± 0.64)% (82.48 ± 0.44)% (80.58± 0.22)%
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Table 6: Performance comparison between GML and SenHint: polarity detection accuracy on hard instances.

ACSA ATSA
PHO16 CAM16 LAP16 RES16 LAP15 RES15 LAP16 RES16 LAP15 RES15

GML 62.65 % 68.54 % 75.95% 77.57 % 78.63 % 73.70 % 80.57 % 86.34 % 76.27 % 80.87 %
SenHint 60.82 % 66.75 % 73.77 % 76.76 % 75.38 % 72.17 % 76.14 % 83.06 % 70.17 % 76.39 %

best result achieved on each dataset is also highlighted in the table. We can see that GML consistently outperforms
the unsupervised alternatives, LEX-SYN and VADER (their performance difference is less than 1% in most cases),
by considerable margins on all the test datasets. For ACSA, the improvement margins on PHO16, RES16 and LAP15
are around 7-9%; the margins on LAP16 is even larger at more than 10%. For ATSA, it achieves the improvements
of more than 10% on LAP16 and around 5% on both RES16 and LAP15. Due to the widely recognized challenge of440

sentiment analysis, the achieved improvements can be deemed very considerable.
Furthermore, it can be observed that the performance of GML is highly competitive compared with the supervised

DNN techniques. Except GCAE, GML achieves overall better performance than all the other DNN models on both
ACSA and ATSA. For instance, for ACSA, GML beats both AT-LSTM and ATAE-LSTM in performance on five out
of totally six datasets. For ATSA, GML achieves the best performance on two out of totally four datasets; except445

GCAE, it outperforms all the other DNN model on at least three out of the four datasets. GML even beats GCAE
on the ACSA task of LAP15 and the ATSA tasks of LAP15 and RES15; their performance on the other datasets are
close. It can also be observed that the semi-supervised model of ASVAET can only improve the performance of DNN
by small margins (less than 2% in most cases). Therefore, the performance of GML is similarly competitive with the
semi-supervised approach. It is worthy to point out that unlike the supervised and semi-supervised DNN models, GML450

does not use any labeled training data provided in the benchmark. These experimental results evidently demonstrate
the efficacy of GML.

To further demonstrate the effectiveness of gradual inference, we have also separately compared GML with a
trimmed version of SenHint [52, 53], which does not encode the influence of DNN output. Both GML and SenHint
begin with the same set of easy instances; they also extract the same sets of word and relational features. Since GML455

and SenHint have the same performance on easy instances, we only compare their performance on hard instances.
Their comparative evaluation results have been presented in Table 6, in which percentage values represent the accura-
cies of polarity detection achieved on hard instances. It can be observed that GML achieves better performance than
SenHint on all test cases of ACSA and ATSA. These evaluation results clearly demonstrate the efficacy of gradual
inference used by GML.460

6.3. Evaluation of Easy Instance Labeling
In this subsection, we first evaluate the performance of the proposed technique for easy instance labeling, and

then its effect on the performance of GML by a comparative study. We have compared our proposed technique
with VADER, which has been empirically shown to perform slightly better than LEX-SYN. In our setting, VADER
considers an instance as easy if the absolute value of its sentiment score is more than a threshold (e.g., 0.4 and 0.5).465

Note that the overall sentiment strength for VADER is a float within the range [-1.0, 1.0].
The detailed evaluation results on the ACSA and ATSA tasks are presented in Table 7. It can be observed that

1. A considerable portion of aspect polarities in the test datasets (varying from 48% to 60%) can be identified by
our proposed technique as easy, and its accuracy is always high at more than 90%;

2. Compared with our proposed technique, VADER with the threshold of 0.4 (i.e., VADER(thres=0.4)) can iden-470

tify more easy instances but with considerably lower accuracy;
3. Compared with our proposed technique, VADER with the threshold of 0.5 (i.e., VADER(thres=0.5)) can only

identify less easy instances, and its accuracy is also lower in most cases.

We have also evaluated the effect of different techniques on the performance of GML. The detailed evaluation
results are presented in Table 8, in which GML-vader0.4 (resp. GML-vader0.5) denotes GML that identifies easy475

instances using VADER with the threshold of 0.4 (resp. 0.5). It can be observed that compared with GML-vader0.4
and GML-vader0.5, GML achieves better performance on seven out of totally eight datasets. Our experimental results
have clearly validated the efficacy of our proposed technique for easy instance labeling.
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Table 7: Evaluation of easy instance labeling: Prop and Acc denote the proportion and achieved accuracy of identified easy instances respectively.

ACSA ATSA
LAP16 RES16 LAP15 RES15 LAP16 RES16 LAP15 RES15

VADER
(thres=0.4)

Prop 48.87% 62.34% 51.50% 58.21% 50.52% 69.54% 54.78% 62.57%
Acc 85.29% 90.51% 87.02% 85.07% 86.36% 93.69% 88.01% 90.80%

VADER
(thres=0.5)

Prop 33.82% 48.63% 36.98% 46.48% 35.91% 56.59% 41.65% 50.48%
Acc 84.65% 93.47% 89.72% 87.24% 84.88% 95.82% 89.64% 92.02%

Our
approach

Prop 48.07% 56.85% 55.41% 48.83% 49.06% 60.30% 56.66% 51.44%
Acc 92.80% 92.64% 94.59% 92.37% 95.32% 93.00% 95.36% 94.03%

Table 8: Performance comparision between GML-vader0.4, GML-vade0.5 and GML.

ACSA ATSA
LAP16 RES16 LAP15 RES15 LAP16 RES16 LAP15 RES15

GML-vader0.4 76.35% 83.29% 79.33% 75.83% 75.37% 87.13% 76.59% 79.04%
GML-vader0.5 74.35% 82.86% 75.46% 76.55% 71.69% 86.05% 74.71% 76.47%
GML 79.84% 85.31% 83.94% 78.57% 80.13% 85.54% 82.48% 80.58%

6.4. Sensitivity Evaluation

Table 9: Sensitivity evaluation over ACSA tasks.

w.r.t m
(k = 3)

PHO16 CAM16 LAP16 RES16 LAP15 RES15

m = 10 75.91% 81.54% 79.95% 83.93% 84.24% 79.39%
m = 20 76.14% 81.41% 79.84% 85.31% 83.94% 78.57%
m = 30 76.26% 81.25% 80.08% 84.79% 83.94% 79.47%
m = 40 75.61% 80.96% 80.08% 84.76% 84.03% 79.11%

w.r.t k
(m = 20)

k = 1 77.28% 81.58% 79.95% 84.99% 83.06% 79.81%
k = 3 76.14% 81.41% 79.84% 85.31% 83.94% 78.57%
k = 5 75.69% 80.91% 77.90% 85.11% 82.97% 79.08%
k = 7 75.92% 80.54% 80.05% 85.08% 83.16% 78.69%

w.r.t d f ′

and d f
(m = 20
k = 3)

d f ′ d f PHO16 CAM16 LAP16 RES16 LAP15 RES15

0.1 0.2 76.60% 81.25% 79.81% 82.91% 84.22% 79.64%
0.1 0.3 76.67% 80.79% 79.76% 84.53% 83.96% 78.64%
0.1 0.4 76.14% 81.41% 79.84% 85.31% 83.94% 78.57%
0.2 0.3 76.45% 80.91% 79.73% 84.82% 84.08% 78.97%
0.2 0.4 76.41% 81.08% 79.89% 84.59% 84.01% 78.72%
0.2 0.5 76.26% 81.41% 79.81% 85.05% 84.12% 79.69%
0.3 0.4 75.95% 80.96% 79.79% 84.62% 83.99% 78.92%
0.3 0.5 76.22% 80.91% 80.16% 85.25% 83.64% 78.58%

In the sensitivity evaluation, we first vary the values of the parameters m and k as shown in Algorithm 1, which480

respectively denote the number of candidate variables selected for approximate entropy ranking and the number of
candidate variables selected for factor graph inference. We set m=10, 20, 30, 40, and k=1, 3, 5, 7. We then vary the
values of the parameters, d f , d f ′ , d∗f and d∗f ′ , which denote the degree of uncertainty of word and relational features as
shown in Eq. 7, 8, 12 and 13. We set d f =d∗f , d f ′ = d∗f ′ , and d f ′ < d f <= 0.5. While evaluating GML’s sensitivity to
a particular parameter, we fix any other parameter to the same value.485

The detailed evaluation results on ACSA are presented in Table 9. Since the standard deviations of accuracy are
very similar under different parameter setting, we only report the averages of accuracy in the table. The evaluation
results on ATSA are similar, thus omitted here. It can be observed that the performance of GML only fluctuate
slightly (≤ 1% in most cases) with different parameter settings. It is noteworthy that the performance of GML
does not fluctuate much with various values of m and k. Since most of GML’s runtime is spent on factor graph490

inference, reducing the value of k can effectively improve efficiency. Our experiments show that even with k taking
the minimal value of 1, the performance of GML only changes marginally. We also have the similar observation
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Figure 3: Scalability evaluation.

on the parameter setting of d f and d f ′ . Various value combinations of d f and d f ′ can only result in very marginal
performance fluctuations. Our experimental results have clearly shown that the performance of GML is, to a large
extent, insensitive to the parameter settings. They bode well for its applicability in real scenarios.495

6.5. Scalability Evaluation
In this section, we evaluate the scalability of the proposed scalable approach for GML. We have generated the

restaurant workloads with different sizes by retrieving the reviews from Yelp. The workload size varies from 1000
to 5000. All the algorithmic parameters are set to the same values for different workloads. In the experiments, we
set m=20, k=3, d f =d∗f =0.4, and d f ′=d∗f ′=0.1. The detailed evaluation results in terms of runtime are presented in500

Figure 3. We have observed that most of the runtime is spent on factor graph inference. Even though the total number
of extracted features in a task may be large, the number of features a single instance has is usually quite limited. As a
result, the size of the subgraph constructed for scalable factor inference on an unlabeled variable generally increases
linearly with workload size. Accordingly, the average computational cost of the scalable GML spent on each unlabeled
variable increases nearly linearly with workload size. Therefore, as shown in Figure 3, the proposed scalable approach505

scales well with workload size.

7. Conclusion

In this paper, we have proposed a technical solution for the task of ALSA based on the recently proposed paradigm
of gradual machine learning. It begins with some easy instances in an ALSA task, and then gradually labels the more
challenging instances based on iterative factor graph inference without any human intervention. Our empirical study510

on the benchmark datasets has validated the efficacy of the proposed solution.
Our research on gradual machine learning is an ongoing effort. Future work can be pursued on several fronts.

Even though GML has been proposed as unsupervised learning approach, human work can be potentially integrated
into its process for improved performance. An interesting open challenge is then how to effectively improve the
performance of gradual machine learning for ALSA with the minimal effort of human intervention, which include but515

are not limited to manually labeling some instances. It is also interesting to develop the solution of gradual machine
learning for the challenging classification tasks other than entity resolution and sentiment analysis.
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