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Abstract—
Recent work has shown that Entity Resolution (ER) can be effectively performed by Gradual
Machine Learning (GML). GML begins with some automatically labeled easy instances, and then
gradually labels more challenging instances by iterative factor graph inference without human
intervention. In GML, shared features serve as the medium for knowledge conveyance between
easy instances and more challenging ones. The existing GML solution supposes that features
play independent roles in gradual inference. However, in real scenarios, this assumption may be
untenable since features are usually correlated with each other. To address this limitation, this
paper proposes an attention-enhanced approach to improve the accuracy of gradual inference.
We first propose a method of spectral feature representation to map correlated features to close
points in the same vector space, and then present a model of attention neural network to learn
the decisive features given arbitrary combinations of features for improved feature weighting.
Finally, our extensive experiments on real benchmark data have validated the efficacy of the
proposed approach.

INTRODUCTION

The task of Entity resolution (ER) aims to
identify equivalent records that refer to the same
real-world entity. Consider the running example
shown in Figure 1. ER needs to match the paper

records between two tables, T1 and T2. The pair
of < r1i, r2j >, in which r1i and r2j denote
a record in T1 and T2 respectively, is called an
equivalent pair if and only if r1i and r2j refer
to the same paper; otherwise, it is called an
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T1

T2

T3

Figure 1: An ER Example: (1) T1: record table 1; (2) T2: record table 2; (3) T3: the table of feature
set.

inequivalent pair. In the example, r11 and r21 are
equivalent while r11 and r22 are inequivalent.

The state-of-the-art performance on ER has
been achieved by deep learning [1], [2]. How-
ever, the efficacy of these DNN models depends
on the presence of a large quantity of accurately
labeled training data, which may not be readi-
ly available in real scenarios. To alleviate this
limitation, recent work has shown that ER can
be effectively performed by Gradual Machine
Learning (GML) [3], [4], which can enable au-
tomatic machine labeling without manual inter-
vention. Given a classification task, GML begins
with some easy instances, which can usually be
automatically labeled by the machine with high
accuracy, and then gradually labels the more
challenging instances by iterative factor graph
inference. The following two properties of GML
make it fundamentally different from the existing
learning paradigms:

• Distribution misalignment between easy and
hard instances in a task. GML processes the
instances in the increasing order of hardness.
Its scenario does not satisfy the i.i.d (inde-
pendent and identically distributed) assump-
tion underlying most existing machine learning
models: the labeled easy instances are not
representative of the unlabeled harder ones.

• Gradual learning by small stages. At each
stage, GML typically labels only one instance
based on the evidential certainty provided by
labeled easier instances. The process of iter-
ative labeling can be performed in an unsu-
pervised manner without requiring any human
intervention.

However, the existing GML solution for ER
supposes that features play independent roles in
gradual inference. Unfortunately, this assump-
tion may be untenable in real scenarios because
features are usually correlated with each other.
Consider the running example shown in Fig 1,
in which T3 lists the metric features leveraged
for gradual inference. It can be observed that
the records, r11 and r21, are highly similar on
all the metrics. Therefore, the pair < r11, r21 >
could be reasoned to be equivalent. However, it is
interesting to note that r12 and r22 are also similar
on most metrics except that they have different
publication years. If the metrics are treated as
independent features, it is very likely that the
pair < r12, r22 > would also be reasoned to be
equivalent. However, in this case, the influence of
other metrics is to a large extent dependent on the
metric value of Year.diff. It can be observed that
r12 is indeed a follow-up work of r22 and they
represent different publications.
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Therefore, there is a need for feature correla-
tion analysis to improve feature influence estima-
tion. In this paper, we propose a novel approach
of attention-enhanced gradual inference for GML
in this paper. Widely used in various natural lan-
guage processing tasks (e.g. auto translation [5]),
the existing attention neural networks usually
leverage pre-trained models such as BERT to rep-
resent text as fixed-length vectors. These models
map semantically similar text to close points in
the same vector space. However, the scenario of
GML brings about new challenges because GML
requires to map features with similar distributions
to close points in the same vector space. Our main
contributions can be summarized as follows:

• We propose a novel approach of attention-
enhanced gradual inference for GML, which
can automatically optimize feature weighting
by feature correlation analysis;

• We present a model of attention neural network
to enable attention-enhanced gradual inference.
In particular, we present a new method of
spectral feature representation to map features
with similar distributions into the same vector
space. Based on spectral feature representation,
the proposed model can effectively learn the
decisive features given arbitrary combinations
of features.

• We empirically validate the efficacy of the
proposed approach on real benchmark data.
Our extensive experiments have shown that the
proposed approach considerably outperforms
the existing GML as well as other unsuper-
vised alternatives, and its performance is even
competitive with the supervised DNN solution-
s.

Related Work
ER plays a key role in data integration and

has been extensively studied in the literature [6].
The state-of-the-art performance on ER has been
achieved by deep learning [1], [2]. However, the
efficacy of these DNN models depends on the
presence of a large quantity of accurately labeled
training data, which may not be readily available
in real scenarios.

GML has also been applied to the task of
aspect-based sentiment analysis [7]. Curriculum
learning (CL) [8] and self-paced learning (S-

PL) [9] are to some extent similar to gradual
machine learning in that they generally start with
learning easier aspects of a task, and then gradu-
ally takes more complex examples into consider-
ation. However, the models trained by curriculum
learning or self-paced learning are supposed to be
applied on a target workload satisfying the i.i.d
assumption. Therefore, as traditional supervised
learning, their efficacy still depends on good-
quality training examples.

Attention neural networks have been widely
used to discriminate relevant information in im-
age inpainting [10] and natural language process-
ing tasks [5]. In particular, a special multistage
attention module was proposed to restore the
mask regions of damaged images in [10]. It is
noteworthy that the existing attention mechanisms
can leverage readily available feature representa-
tions (e.g. image and pre-trained language model
representations). In contrast, this paper proposes
a novel approach based on spectral embedding
to represent features with different distributions
as vectors such that they can be processed by an
attention neural network for correlation analysis.

GML Paradigm Overview
The process of gradual machine learning for

ER, as shown in Figure 2 , consists of the
following three essential steps:

Easy Instance Labeling
For ER, it can be observed that the more

similar two records are, the more likely they
refer to the same real-world entity. According
to this assumption, we can statistically state that
a pair with a high (resp. low) similarity has
a correspondingly high probability of being an
equivalent (resp. inequivalent) pair. These record
pairs can be deemed to be easy in that they can be
automatically labeled by the machine with high
accuracy.

Feature Modeling
To facilitate effective knowledge conveyance

between labeled and unlabeled instances, we ex-
tract the following two types of features from ER
record pairs:

1) Attribute value similarity. This type of fea-
ture measures a pair’s value similarity at
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Figure 2: Paradigm Overview. The GML consists of the following three essential steps:(1) Easy
Instance Labeling; (2)Feature Extracting and Influence Modeling; (3) Gradual Inference.

each record attribute. It is noteworthy that
different attributes usually require different
similarity metrics.

2) Token features. Denoting a token by oi,
we represent the feature that oi occurs in
both records by Same(oi), and the fea-
ture that oi occurs in one and only one
record by Diff(oi). Note that the fea-
ture of Same(oi) serves as evidence for
equivalence, while Diff(oi) indicates in-
equivalence. For the workloads with mis-
cellaneous tokens, not every token is highly
discriminating (or indicative of entity iden-
tity); therefore, we filter the tokens by the
metric of IDF (inverse document frequen-
cy).

For each extracted feature, GML models its
influence over the labels of its relevant instances
by a monotonous sigmoid function with two
parameters, α and τ , which denote the x-value
of the function’s midpoint and the steepness of
the curve respectively, as follows

Pf (d) =
1

1 + e−τf (xf (d)−αf )
, (1)

in which f denotes a feature, d denotes pair
instance, xf (d) denotes d’s feature value w.r.t
f and Pf (d) denotes the influence of f over

d. Note that token features have the constant
value of 1. Therefore, we first align them with
record similarity and then model their influence
by sigmoid functions.

Gradual Inference.
GML construct a factor graph, G, which

consists of the variables representing labeled in-
stances and unlabeled harder ones, and the factors
representing the common features between in-
stances. Denoting the feature set of a pair d by Fd,
a factor graph infers the equivalence probability
of d, P (d), by:

P (d) =

∏
f∈Fd

eωf (d)

1 +
∏
f∈Fd

eωf (d)
, (2)

where

ωf (d) = θf (d) · log(
Pf (d)

1− Pf (d)
)

= θf (d) · τf (xf (d)− αf ),

(3)

in which ωf (d) denotes the factor weight of f ,
log(·) encodes the estimated influence of f on d
by sigmoid regression, and θf (d) represents the
confidence on influence estimation.

In GML, the parameters of (α,τ ) need to
be iteratively learned by maximum likelihood. A
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scalable approach of gradual inference has also
been presented in [4]. It first selects the top-
m unlabeled variables with the most evidential
support in G as the candidates for probability
inference. To reduce the invocation of maxi-
mum likelihood estimation, it then approximates
probability inference by an efficient algorithm
on the m candidates. Finally, it estimates the
probabilities of only the top-k most promising
unlabeled variables among the m candidates via
factor graph inference. At each iteration, GML
labels the unlabeled pair with the highest degree
of evidential certainty measured by inverse of
entropy.

Attention-enhanced Gradual Inference
In this section, we first present the method of

spectral feature representation, and then describe
the attention model to enable attention-enhanced
gradual inference.

Spectral Feature Representation
To capture feature correlation, we first con-

struct a distribution similarity matrix of features,
and then generate their corresponding spectral
embeddings, which are finally taken as desired
feature representations. We measure the similarity
of two feature distributions based on their co-
occurrence in pair instances. Specifically, we use
the metric of Maximal Information Coefficient
(MIC) because it has been empirically shown
to be effective at capturing correlations among
distributions with diversified shapes.

Formally, we denote a feature set by F and its
matrix of |F |×|F | by W , in which each entrance
wij is estimated by

wij =

∣∣Dfi ∩Dfj

∣∣∣∣Dfi ∪Dfj

∣∣MIC(fi, fj), (4)

where fi denotes a feature in F , Dfi the set of
instances having the feature fi, and MIC(fi, fj)
the Maximal Information Coefficient between fi
and fj . Specifically, the value of MIC(fi, fj) is
estimated by

MIC(fi, fj) = max
ri×rj<B

max
G∈Gri×rj

(IG)

log min(ri, rj)
, (5)

in which B denotes a function of sample size,
Gri×rj denotes all grids on the scatter plot of

the two variables having the resolution size of
ri × rj , and IG denotes the mutual information
of the probability distribution induced in the box
of G.

To extract spectral embeddings based on the
matrix of W , we compute the normalized Graph
Laplacians L for the matrix W , which is formally
represented by

L = I − D̃ 1
2WD̃

1
2 , (6)

where I denotes the identity matrix and D̃ the de-
gree matrix. Specifically, D̃ is a diagonal matrix
with d̃1, · · · , d̃|F | on its diagonal, and the value
of d̃i is computed by

d̃i =

|F |∑
j=1

wij. (7)

Subsequently, we compute the first m eigen-
vectors v1, · · · ,vm of L, where each vi de-
notes a vector with the size of |F |. Let e ∈
R|F |×m denote a matrix consisting of the vectors
v1, · · · ,vm. Accordingly, the spectral embedding
ei ∈ E of a feature, fi, is represented by

ei = (vi1, · · · ,vim). (8)

Finally, the attention-enhanced GML repre-
sents each feature, fi, by its spectral embedding
of ei, which is taken as the input to attention
neural network.

Attention Model
The attention model is supposed to automati-

cally optimize weighting of features by capturing
their correlation. For simplicity of presentation,
we denote the original estimated factor weight
by ωf (d), and the new attention-enhanced factor
weight by φf (d). As shown in Fig 3, the attention
model receives its inputs from two sources: the
original factor weights estimated by Eq. 3 and
the feature representations as shown in Eq. 8.
It outputs a new feature weight for each of the
factors in G.

The attention model consists of two parts:
an attention multi-layer and a linear transforma-
tion layer. It employs the element-wise product
of spectral embeddings, ei, and factor weights,
ωfi(d), as its inputs. Formally, given an instance
d and its feature fi, its corresponding input, u0

i ,
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Figure 3: Attentional Gradual Inference. The model converts the estimated factor weight ωf (d) to
the attention-enhanced factor weight φf (d).

is represented by

u0
i = ωfi(d) ∗ ei, (9)

in which ei denotes the embedding vector of fi.
The attention layer, as shown in Fig 3, is formally
defined by

uh+1
i = φhi u

h
i , (10)

φhi =
exp(zhi )∑|Fd|
j=1 exp(z

h
j )
, (11)

zhi = uhi ·Mh · ūh>, (12)

ūh =
1

|Fd|

|Fd|∑
i=1

uhi , (13)

where Fd denotes the feature set of a pair d
and Mh ∈ Rm×m denotes the hidden parameter
matrix of layer h.

In each layer, We compute the means of uhi ,
denoted by ūh, to capture the global context of
an instance d. The matrix of Mh maps each
feature embedding uhi to its global context ūh.
For batch processing with a set of instances,
the mask layer filters the features that do not
occur in the instances. The model repeats the
attention layer H times to maximally capture
complex correlations between features. Finally,
the model outputs the attention weight φi through
a Softmax layer to re-weight feature influence.

Specifically, it coverts the output vector uHi into
a scalar output, denoted as φfi(d), by a linear
transformation as follows

φfi(d) = wfi · uH>
i + bfi , (14)

where wfi ∈ w denotes a weight vector with the
size of m and bfi ∈ b denotes a scalar bias.

Similar to the original GML, the process
of attention-enhanced gradual inference essen-
tially learns the parameter values, denoted by
θ = (α, τ,M0, · · · ,MH ,w,b), such that the
inferred results maximally match the evidence
observations on labeled instances.

Empirical Evaluation
Our empirical study has been conducted on

three real benchmark datasets, which are de-
scribed as follows:

• DBLP-ACM1 (denoted by DA): ER needs to
match the publication entities between DBLP
and ACM. After blocking, the workload con-
sists of 6402 pairs, in which 2207 pairs are
equivalent and the remaining 4195 ones are
inequivalent.

• Abt-Buy2 (denoted by AB): ER needs to
match the product entities between Abt.com
and Buy.com. After blocking, the workload
consists of 8924 pairs, in which 774 pairs are

1available at https://dbs.uni-leipzig.de/file/DBLP-ACM.zip
2available at https://dbs.uni-leipzig.de/file/Abt-Buy.zip
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equivalent and the remaining 8150 ones are
inequivalent.

• Songs3 (denoted by SG): ER needs to match
the song records within the same table. After
blocking, the workload consists of 8312 pairs,
in which 5211 pairs are equivalent and the
remaining 3101 ones are unmatched.

We have compared AGML with both unsu-
pervised alternatives and supervised models. The
unsupervised alternatives include

• Unsupervised Clustering (denoted by UC). It
maps the record pairs into points in a multi-
dimensional feature space and then uses the k-
means technique to cluster them into distinct
classes based on distance measurement.

• Unsupervised Rule-based (denoted by UR).
It reasons about pair equivalence based on
the predefined rules, which are specified in
terms of record similarity. For fair comparison,
our implementation estimates the proportion of
equivalent and inequivalent instances based on
the UC results, and then label the instances
based on record similarity.

• Original Gradual Machine Learning (denoted
by GML). Assuming that all features are inde-
pendent, the original GML solution gradually
labels the instances through iterative factor
graph inference.

The supervised models include

• Support Vector Machine (denoted by
SVM) [11]. Mapping record pairs to points in
a multi-dimensional feature space, it first fits
an optimal SVM classifier on labeled training
data and then uses the trained model to label
the pairs in test data.

• DeepMatcher (denoted by DM) [1]. It is the
classical supervised DNN solution for ER.

• Ditto [2]. It is the state-of-the-art supervised
DNN for ER based on pre-trained transformer-
based language models. Ditto allows domain
knowledge to be injected by highlighting the
important pieces of input information that may
be of interest to make labeling decisions.

As in [4], AGML uses pair similarity as the
machine metric to identify easy instances. For

3available at http://pages.cs.wisc.edu/˜anhai/data/falcon data/songs

fair comparison, given a percentage of easy in-
stances (e.g. 30%), AGML first uses the result of
unsupervised clustering (UC) to estimate the per-
centages of equivalent and inequivalent instances
in a workload, and then proportionally identify
the easy matching and unmatching instances by
record similarity. Our implementation of AGML
and the test datasets have also been made open-
source available at the website4.

Comparative Evaluation
In the comparative evaluation, we set the

number of AGML’s attention layers at 6 and its
embedding size at 256. As shown in the subsec-
tion of Sensitivity Evaluation, the performance
of AGML is to a large extent insensitive to the
number of attention layers, and its performance
is stable provided that embedding size is large
enough. For fair comparison, we set other param-
eters of AGML to the same values as the original
GML [4]. Specifically, the ratio of easy instances
for both GML and AGML is set at 30%.

The detailed results are presented in Ta-
ble 1(a), in which the best results of unsuper-
vised and supervised approaches measured by F-
1 on each dataset have been highlighted. The
reported results of GML, AGML and supervised
approaches are averages over ten runs. For the
supervised approaches, we report their perfor-
mance provided with different portions of training
data. For instance, for SVM, “30%” means that
30% of a dataset are used for training; for DNN,
“30%(25%:5%)” means that 25% of a dataset
are used for model training and 5% are used for
validation.

It can be observed that AGML performs con-
siderably better than the unsupervised alternatives
of UR, UC and GML. Specifically, AGML beats
UR and UC by considerable margins on all the
test datasets. Their performance differences in
terms of F-1 are larger than 8% on AB and SG,
and the margins are close to 4% on DA. AGML
also consistently performs better than GML by
the margins of 2.5%, 3.2% and 2.6% on DA,
AB and SG respectively. Due to the inherent
challenge of ER, these improvements are indeed
considerable.

It can also be observed that even with the

4https://chenbenben.org/agml.html
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Table 1: Evaluation results on different datasets

(a) Comparative Evaluation

AGML GML UR UC

recall precision F1 recall precision F1 recall precision F1 recall precision F1

DA 0.906 0.998 0.941 0.849 0.994 0.916 0.963 0.842 0.901 0.965 0.857 0.908
AB 0.691 0.559 0.618 0.623 0.554 0.586 0.773 0.300 0.432 0.800 0.311 0.448
SG 0.988 0.981 0.984 0.925 0.994 0.958 0.665 0.966 0.788 0.855 0.589 0.697

SVM

10% 20% 30%

recall precision F1 recall precision F1 recall precision F1

DA 0.881 0.993 0.937 0.889 0.990 0.937 0.952 0.989 0.970
AB 0.418 0.771 0.527 0.440 0.659 0.528 0.423 0.700 0.528
SG 0.955 0.999 0.976 0.957 0.999 0.977 0.964 0.998 0.981

DM

10%(5%:5%) 20%(15%:5%) 30%(25%:5%)

recall precision F1 recall precision F1 recall precision F1

DA 0.942 0.978 0.960 0.961 0.978 0.969 0.959 0.982 0.971
AB 0.043 0.254 0.074 0.441 0.601 0.509 0.444 0.707 0.546
SG 0.980 0.975 0.977 0.987 0.987 0.987 0.993 0.990 0.991

Ditto

10%(5%:5%) 20%(15%:5%) 30%(25%:5%)

recall precision F1 recall precision F1 recall precision F1

DA 0.902 0.950 0.925 0.985 0.965 0.975 0.988 0.976 0.982
AB 0.649 0.306 0.416 0.858 0.597 0.704 0.841 0.817 0.829
SG 0.962 0.942 0.951 0.965 0.992 0.978 0.992 0.993 0.992

(b) Sensitivity Evaluation w.r.t Attention Layers

F-1 2 4 6

DA 0.941 0.942 0.941
AB 0.61 0.614 0.618
SG 0.976 0.985 0.984

(c) Sensitivity Evaluation w.r.t embedding size

F-1 64 128 256

DA 0.877 0.91 0.941
AB 0.573 0.619 0.618
SG 0.752 0.714 0.984

proportion of training data set at 30%, the perfor-
mance of AGML is highly competitive with SVM
and DM. For instance, with the proportion of
training data set at 30%, AGML beats DM on AB
while achieving competitive performance on DA
and SG. It is noteworthy that on AB, AGML beats
SVM and DM by considerable margins even with
the 30% ratio of training data. The AB data con-
tain only two important attributes for equivalence
reasoning, product name and product description.
Product names are usually very short, while the
attribute of product description can contain short

or long sentences. Such characteristics make the
SVM and DM hard to accurately match records.
Compared with Ditto, AGML achieves competi-
tive performance when the proportion of training
data is low (e.g. 10% and 20%). If provided
with more training data (e.g. 30%), Ditto beats
AGML in performance. However, it is worthy to
point out that the efficacy of Ditto depends on
sufficient labeled training data while no such data
is supposed to be available for AGML.

To better understand the advantage of AGML
over GML, we visualize the attention weights of
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Figure 4: Weight Visualization.
the features in the running examples in Figure 4,
in which color depth indicates weight value. It
can be observed that on the pair of < r11, r21 >,
attention is focused on the features of similarities
in title and author name, while on < r11, r21 >,
year.diff is correctly attentioned to be as the most
decisive feature.

Sensitivity Evaluation
The results w.r.t the number of attention lay-

ers are presented in Table 1(b). Our experiment
varied the number of attention layers from 2 to
6. It can be observed that the performance of
AGML is very robust w.r.t the number of attention
layers. With only 2 attention layers, AGML can
achieve very competitive performance on all the
test datasets.

The results w.r.t the embedding size are pre-
sented in Table 1(c). Our experiment varied the
embedding size from 64 to 256. It can be ob-
served that the performance of AGML is sensitive

Figure 5: Scalability Evaluation.

to the embedding size. When the embeddings size
is 256, the performance of AGML is competi-
tive and stable on all the 3 datasets. However,
the performance of AGML generally deteriorates
on all the three datasets when embedding size
decreases. Its performance on SG decreases more
dramatically because SG contains a larger number
of tokens thus more features. As a result, SG
requires a larger embedding space to learn a
fine attention model. This observation should not
come as a surprise, since it has been widely
recognized that the capability of an attention
space to capture feature correlation to a large
extent depends on its space size.

Scalability Evaluation
For scalability evaluation, we generate

different-sized DA workloads (between 10000 to
40000) based on the DBLP and ACM corpus.
The results are presented in Figure 5, in which
the x-axis denotes workload size and the y-axis
denotes the cost multiple with the runtime spent
on the workload of 10k as the baseline. It can be
observed that the total consumed time increases
nearly linearly with workload size. For a fixed
batch size, the training time only increases with
data size. Therefore, the attention-enhanced
inference approach scales well with workload
size.

Conclusion
In this paper, we have proposed a new

attention-enhanced inference approach for grad-
ual machine learning. Our extensive experiments
have validated its efficacy. We have observed
that pre-trained language models (e.g. BERT) are
effective at improving the performance of deep
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ER. While our current work generated feature
representations based on feature co-occurrence,
it is interesting in future to investigate how to
improve feature representation by fusing the in-
fluence of feature co-occurrence and pre-trained
language models.
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