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1 Abstract

Pure machine-based solutions usually struggle in the challenging classifica-
tion tasks such as entity resolution (ER). To alleviate this problem, a recent
trend is to involve the human in the resolution process, most notably the
crowdsourcing approach. However, it remains very challenging to effectively
improve machine-based entity resolution with limited human effort. In this
paper, we investigate the problem of human and machine cooperation for
ER from a risk perspective. We propose to select the machine-labeled in-
stances at high risk of being mislabeled for manual verification. For this
task, we present a risk model that takes into consideration the human-
labeled instances as well as the output of machine resolution. Finally, we
evaluate the performance of the proposed risk model on real data. Our ex-
periments demonstrate that it can pick up the mislabeled instances with
considerably higher accuracy than the existing alternatives. Provided with
the same amount of human cost budget, it can also achieve better resolution
quality than the state-of-the-art approach based on active learning.

2 Introduction

Entity resolution aims at finding the records that refer to the same real-world entity.
Usually considered as a classification task [1], ER is challenging in that the records may
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contain incomplete and dirty values. ER can be performed based on rules, probabilistic
theory or machine learning [1, 2]. However, the traditional machine-based solutions may
not be able to produce satisfactory results in many practical scenarios. Therefore, there
is an increasing need to involve the human in the resolution process for improved quality
[3]. For instance, the active learning approach [4] proposed to select the instances for
manual verification based on the benefit they can bring to a machine classifier. The
approach of crowdsourcing [3, 5, 6] instead investigated how to make the human work
efficiently and effectively on a given workload. Depending on pre-specified assumptions
(e.g. partial order relationship [7]), it usually makes the human label some instances in
a workload for the purpose that the remaining instances can be automatically labeled
by the machine with high accuracy.

It can be observed that the existing hybrid approaches select the instances for manual
verification to maximize the benefit they can bring to a given workload as a whole.
However, the marginal benefit of additional manual work usually decreases (sometimes
dramatically) with the cost. For instance, in active learning, it has been well recognized
[8] that increasing the number of training data points may quickly become ineffectual in
improving classification performance after initial iterations. In the application scenarios
where fast response is required, it is also desirable that a limited amount of human effort
can be exclusively spent on the instances at high risk of being mislabeled by the machine.

In this paper, we investigate the problem of human and machine cooperation for im-
proved quality from a risk perspective. Given a limited human cost budget, we propose
to select the machine-labeled instances at high risk of being mislabeled for manual veri-
fication. The proposed risk-based solution is supposed to be used in the scenario where
increasing training points for a learning model has become ineffectual or not cost-effective
in improving classification performance. It can therefore serve as a valuable complement
to the existing learning-based solutions. On the other hand, even though some of the
proposed techniques for active learning (e.g. training instance selection based on uncer-
tainty [9]) can be naturally applied for this task, our work is the first to introduce the
concept of risk and propose a formal risk model for the task. The major contributions
of this paper can be summarized as follows:

• We investigate the problem of human and machine cooperation for ER from a risk
perspective and define the corresponding optimization problem (Section. 3);

• We present a risk model for prioritizing the machine-labeled instances for manual
verification (Section. 4);

• We evaluate the performance of the proposed approach on real data by a compar-
ative study. The experimental results validate its efficacy (Section. 5).

3 Problem Definition

Given an ER workload consisting of record pairs, a machine classifier labels each pair as
match or unmatch. Due to the inherent challenge of entity resolution, a classifier may
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Figure 3.1: The Risk-based Solution.

be prone to mislabeling some of the pairs. In this paper, we investigate the problem
of how to improve the results of machine resolution by manually correcting machine
errors. Since human work is expensive, we impose a budget on the amount of spent
human effort. For the sake of presentation simplicity, we quantify the budget by the
number of manually-inspected pairs. Given a budget k, an ideal solution would identify
k mislabeled pairs. In this case, each manual inspection effectively corrects a machine
error. However, in practice, it is more likely that a solution chooses both mislabeled and
correctly labeled pairs. We formally define the optimization problem as follows:

Definition 1 [Optimization Problem of Improving Machine Resolution by Manual In-
spection]. Given an ER workload, D, which consists of n record pairs, {d1,d2,. . .,dn}, a
machine classifier labels each pair in D as match or unmatch. Given the budget k on
human work, the optimization problem is to identify a set of k machine-labeled pairs in
D, denoted by DH , for manual inspection such that the number of pairs misclassified by
the machine in DH is maximized.

Risk-based Solution. The optimization problem defined in Definition. 1 is chal-
lenging due to the fact that the match probabilities of the machine-labeled pairs are
difficult to estimate. In this paper, we propose to solve the optimization problem from
a risk perspective. In other words, the machine-labeled pairs at higher risk of being
mislabeled should be chosen first for manual inspection. It can be observed that if risk
measurement is accurate given all the available information, the strategy of selecting
by risk-wise order can be considered optimal. The workflow of the risk-based solution
is presented in Figure. 3.1. It iteratively selects the most risky machine-labeled pairs
for manual inspection until the budget limit is reached. After each iteration, the set of
manually-labeled pairs is updated, and is used to re-evaluate the risk of the remaining
machine-labeled pairs.

It is worthy to point out that the risk-based solution can work properly with both
supervised and unsupervised classifiers. Given a supervised classifier, risk analysis can
be initially performed based on the human-labeled pairs as well as machine resolution.
Given an unsupervised classifier, risk analysis can only start with machine resolution;
after initial iterations, it can then be similarly performed based on the human-labeled
pairs as well as machine resolution.
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4 Risk Analysis

In this section, we propose the technique of risk analysis for prioritizing pair selection.
Given an instance pair di in D, we represent its match probability by a random variable,
Pi. As usual, we model Pi by a normal distribution, N (µi, σ

2
i ), where µi and σ2i denote

its expectation and variance respectively. In the rest of this section, we first describe
how to estimate the match probability distribution in Subsection 4.1, and then present
the metric for risk measurement in Subsection 4.2.

4.1 Distribution Estimation

It can be observed that there exist two information sources for the estimation of match
probability distribution. Firstly, even though a machine classifier may fail to produce
satisfactory resolution results, it can provide valuable hints about the status of the pairs.
Therefore, the results of machine resolution can generally serve as a starting point for
the estimation. The second source consists of the human-labeled results. Compared
with machine labels, the labels provided by the human are usually more accurate, i.e.
they can provide more information beyond the capability of machine resolution.

We employ the classical Bayesian inference [10] to estimate the distribution. The
inference process takes the match probability estimated by the machine as the prior
expectation, and uses the human-labeled pairs as samples to estimate the posterior
expectation and variance. The proposed approach has the desirable property that it
can seamlessly integrate the hints provided by both the human and the machine into a
unified inference process.

4.1.1 Prior Expectation Estimation by Machine

A machine classifier labels instance pairs as match or unmatch based on a classification
metric. Generally, the match probability of a pair can be considered to be monotonous
with its metric value. In this paper, we use the SVM (Support Vector Machine) clas-
sifier based on active learning as the illustrative example. It classifies pairs through a
hyperplane. Instead of randomly selecting training data points, it iteratively chooses the
instance pair which is closest to the hyperplane of the current SVM as the next training
data point, and updates the SVM until a preset training budget is exhausted. Note
that an SVM classifier usually provides a pair’s distance from the hyperplane, rather
than a match probability, as the evidence for its given label. We therefore use Platt’s
probabilistic outputs for SVM [11] to translate the distance into a match probability.

4.1.2 Sample Observation Generation by Human

We generate the sample observations on the status of a target pair based on features.
Features serve as the medium to convey valuable information from the human-labeled
pairs to a target pair. Desirably, the features used for information conveyance should
have the following three properties:
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1. They can be easily extracted from the human-labeled pairs;

2. They should be evidential, or indicative of the status of a pair;

3. They should be to a large extent independent of the metric used by the machine
classifier.

The final property ensures that the sample observations can provide additional valuable
information not implied by machine labels. To this aim, we extract two types of features
from pairs, Same(ti) and Diff(ti), where ti represents a token, Same(ti) indicates that
both records in a pair contain ti, and Diff(ti) indicates that one and only one record in
a pair contains ti. It can be observed that these two features are evidential and easily
extractable. Moreover, they were not used in the existing classification metrics proposed
for ER.

Suppose that a target pair, di, contains m features, which are denoted by {f1, f2, . . .,
fm}. A human-labeled pair containing all the m features can be naturally considered to
be a valid observation on the status of di. Unfortunately, due to their limited number
in practical scenarios, the human-labeled pairs with this property may not provide with
sufficient observations. Therefore, we also consider the human-labeled pairs that contain
only a portion of the m features in di. Suppose that a human-labeled pair, dhj , contains
the k features in di, {f1, f2, . . ., fk}, but does not contain the remaining (m − k)
features. Inspired by portfolio investment theory [12], we treat features as stocks, and a
feature’s match probability as its investment reward. Then, the match probability of di
corresponds to the combined reward of an investment portfolio consisting of m stocks,
{f1, f2, . . ., fm}.

Based on the label of dhj , we generate the corresponding sample observation on the
status of di by

Oj(di) =
L(dhj ) +

∑
k<r≤mwrE(fr)

1 +
∑

k<r≤mwr
, (4.1)

in which wr denotes the feature weight, L(dhj ) denotes the manual label of dhj , and E(fr)

denotes the expectation of fr’s match probability. In Eq. 4.1, L(dhj )=1 if the label is

match and L(dhj )=0 otherwise. We estimate E(fr) by

E(fr) =

∑
1≤s≤n L(drs)

n
, (4.2)

in which drs denotes a human-labeled pair containing the feature fr and n denotes its total
number. An example of sample observation generation is shown in Example 1. To deter-
mine the feature weight wr, we take two factors into account: the informativeness and
discriminability of a feature. The informativeness describes the extent that a feature can
help to determine the matching status. It is defined as IF (fr) = max( E(fr)

1−E(fr)
, 1−E(fr)

E(fr)
).

And the discriminability describes the extent that a feature can identify the target pair.
It is defined as inverse document frequency (IDF ). Combining them together, we define
wr = IF · IDF . It is worthy to point out that in the generation of sample observations
for di, we only consider the features contained in the human-labeled pairs. If a feature
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of di never appears in the human-labeled pairs, we lack reliable information to reason
about its match probability. It is therefore ignored in the observation generation process.

Example 1 Suppose that a target pair, d1, contains 3 features, {f1,f2,f3}, and a pair
manually labeled as unmatch by the human, dh2 , contains f1 and f2, but not f3. For the
sake of presentation simplicity, we also suppose that feature weights are equally set to be
1. With the expectation of the match probability of f3 being estimated at 0.3, the sample
observation provided by dh2 for the status of d1 is approximated by O2(d1) = 0+0.3

2 = 0.15.

4.1.3 Bayesian Inference

Given a random variable V following a known prior distribution, π(V ), the technique of
Bayesian inference [10] estimates the posterior distribution of V by combining the prior
information provided by π(V ) and the sample observations. In our example, the prior
distribution of the match probability of a target pair, di, is represented by the normal
distribution of N (µi, σ

2
i ). Suppose that the prior expectation of µi provided by the

machine classifier is µ0i and the human-labeled pairs provide with n sample observations.
As usual, we suppose that µi and σ2i follow a combined conjugate prior distribution,

or a normal-inverse-gamma distribution [13]. The prior distributions of µi and σ2i can
thus be represented by

p(µi|σ2i ;µ0i , n0) ∼ N (µ0i ,
σ2i
n0

), (4.3)

and
p(σ2i ;α, β) ∼ InvGamma(α0, β0), (4.4)

where n0, α0 and β0 are the hyperparameters, and InvGamma() denotes an inverse-

gamma distribution [14]. Denoting the posteriors by N (µ1i ,
σ2
i
n1 ) and InvGamma(α1, β1),

we have

µ1i =
n0 · µ0i + n · p̄i

n0 + n
,

n1 = n0 + n,

α1 = α0 +
n

2
,

β1 = β0 +
1

2

∑
n
j=1(p

j
i − p̄i)

2 +
1

2
· n0n

n0 + n
· (µ0i − p̄i)2,

(4.5)

where p̄i denotes the average value of observed samples.
In Eq. 4.3 and 4.4, the hyperparameters n0, α0 and β0 are used to convey the

belief about the prior information. Specifically, given a confidence level θ on the prior
expectation µ0i , we set n0 = θn/(1−θ). It means that the inference process will preserve
θµ0i for the estimation of µi. Similarly, we set α0 = n

2 ·
θ

1−θ + 1, and β0 = S2
n · (α0−1), in

which S2
n represents the variance of all the samples. It means that the inference process

will preserve θS2
n for the estimation of σ2i .

Based on the obtained posterior distributions of µi and σ2i , a point estimate µ̂i for
the random variable µi (resp. σ̂2i for σ2i ) can be inferred using a metric of Bayes risk. A
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common risk function is the mean square error, which is defined as E[(χ̂−χ)2]. Using the
mean of the posterior distribution as the Bayes estimate of the unknown parameter can
minimize the mean square error [10]. Having known that the mean of an inverse-gamma
distribution with parameters α and β is β

α−1 , the Bayes estimates of the expectation and
the variance can be represented as follows,

µ̂i = µ1i , (4.6)

σ̂2i =
β1

α1 − 1
. (4.7)

4.2 Risk Model

Inspired by portfolio investment theory [12], we employ the metric of Conditional Value
at Risk (CVaR) to measure the risk of pairs being mislabeled by the machine. Given
a confidence level of θ, CVaR is the expected loss incurred in the 1 − θ worst cases.
Formally, given the loss function z(X) ∈ Lp(F) of a portfolio X and θ, the metric of
CVaR is defined as follows:

CV aRθ(X) =
1

1− θ

∫ 1−θ

0
V aR1−γ(X)dγ, (4.8)

where V aR1−γ(X) represents the minimum loss incurred at or below γ and can be
formally represented by

V aR1−γ(X) = inf{z∗ : P (z(X) ≥ z∗) ≤ γ}. (4.9)

Given a pair, di, we denote its match probability by x, and its probability density
function and cumulative distribution function by pdfdi(x) and cdfdi(x) respectively. If di
is labeled by the machine as unmatch, its probability of being mislabeled by the machine
is equal to x. Accordingly, its worst-case loss corresponds to the case that x is maximal.
Therefore, given the confidence level of θ, the CVaR of di is the expectation of z = x in
the 1 − θ cases where x is from cdf−1di (θ) to +∞. Formally, the CVaR risk of a pair di
with the machine label of unmatch can be estimated by

CV aRθ(di) =
1

1− θ

+∞∫
cdf−1

di
(θ)

pdfdi(x) · xdx. (4.10)

Otherwise, if di is labeled by the machine as match, its potential loss of being misla-
beled by the machine is equal to 1 − x. Therefore, the CVaR risk of a pair di with the
machine label of match can be similarly estimated by

CV aRθ(di) =
1

1− θ

cdf−1
di

(1−θ)∫
−∞

pdfdi(x) · (1− x)dx. (4.11)
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5 Empirical Evaluation

We have evaluated the performance of the proposed risk model, denoted by CVAR, on
real data by a comparative study. We compare it with both a baseline alternative and
a state-of-the-art technique proposed for active learning [9]. The baseline method, de-
noted by BASE, selects the machine-labeled pairs solely based on the match expectation
estimated by the machine. Specifically, given a pair di and its match probability µ0i
provided by a classifier, the risk of di with the machine label of unmatch (resp. match)
is simply estimated to be µ0i (resp. (1 − µ0i )). Since the two algorithms proposed in
[9], Uncertainty and MinExpError, perform very similarly in our experiments, we only
report the results of Uncertainty. We denote the algorithm of Uncertainty by UNCT.
Intuitively, UNCT iteratively selects the pairs that the classifier is most uncertain about
for manual verification.

Additionally, we also compare the proposed risk-based solution (denoted by RISK)
with the active learning solution (denoted by ACTL) on the achieved resolution quality
provided with the same amount of human cost budget. Note that the ACTL solution
would tune classifier parameters after additional manual verification, thus can potentially
improve classification accuracy, while RISK would not.

We used the real datasets DBLP-Scholar 1 and Abt-Buy 2 in the empirical study.
As usual, we use the standard blocking technique to filter the instance pairs unlikely
to match. After blocking, the DBLP-Scholar workload contains totally 41416 instance
pairs, and the Abt-Buy workload contains totally 20314 instance pairs. We employ
SVM as the machine classifier. On DBLP-Scholar, we use the Jaccard similarity over
the attributes title and authors, the edit distance over the attributes title, authors and
venue, and the number equality over publication year as the input features for SVM. With
only 1% of input data as training data, the achieved precision and recall of the SVM
classifier are 0.917 and 0.875 respectively. On Abt-Buy, we use the Jaccard similarity and
edit distance over the attributes product name and description respectively as the input
features for SVM. With only 2% of input data as training data, the achieved precision
and recall are 0.567 and 0.338 respectively. In the implementation of risk analysis, the
confidence level θ is set to 0.8. Since a valid match probability should be between 0 and
1, we transform the inferred normal distribution to a truncated normal distribution in
the range of 0 to 1 [15].

The comparative results on pick-up accuracy are presented in Figure 5.1. It can be
observed that provided with the same amount of budget, CVAR consistently picks up
more mislabeled pairs than BASE and UNCT. Since both BASE and UNCT reason
about the risk based on the match expectation estimated by the machine, it should not
be surprising that they perform similarly. The improvement margins of CVAR over the
alternatives first enlarge with the increase of budget, but then gradually narrow down
as expected. Since the number of mislabeled pairs decreases with additional manual
inspections, the performance difference between different approaches tend to decrease as

1https://dbs.uni-leipzig.de/file/DBLP-Scholar.zip
2https://dbs.uni-leipzig.de/file/Abt-Buy.zip
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(a) The DBLP-Scholar dataset.
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(b) The Abt-Buy dataset.

Figure 5.1: Pick-up accuracy comparison.
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(b) The Abt-Buy dataset.

Figure 5.2: Resolution quality comparison between RISK and ACTL.
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well. These experimental results clearly validate the efficacy of the proposed risk model.
The comparative results on resolution quality, measured by the F-1 metric, between

RISK and ACTL, are also presented in Figure 5.2. The achieved quality is measured
on the results consisting of both manually labeled pairs and the pairs labeled by the
classifier. It can be observed that after initial iterations, RISK achieves considerably
better quality than ACTL. Even though ACTL uses the additional labeled data to update
its classifier, the marginal benefit of additional training data points drops quickly with
the increase of budget as expected. These experimental results show that the risk-based
approach can be more effective than the active learning approach in improving resolution
quality.

6 Conclusion

In this paper, we propose to investigate the problem of human and machine cooperation
for ER from a risk perspective. We have presented a risk model and empirically validated
its efficacy. It is worthy to point out that the proposed risk-based framework can be
potentially generalized for other classification tasks. It is interesting to investigate its
application in the scenarios besides ER in future work.
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