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Joint Inference for Aspect-Level Sentiment
Analysis by Deep Neural Networks
and Linguistic Hints
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Abstract—The state-of-the-art techniques for aspect-level sentiment analysis focused on feature modeling using a variety of deep
neural networks (DNN). Unfortunately, their performance may still fall short of expectation in real scenarios due to the semantic
complexity of natural languages. Motivated by the observation that many linguistic hints (e.g., sentiment words and shift words) are
reliable polarity indicators, we propose a joint framework, SenHint, which can seamlessly integrate the output of deep neural networks
and the implications of linguistic hints in a unified model based on Markov logic network (MLN). SenHint leverages the linguistic hints
for multiple purposes: (1) to identify the easy instances, whose polarities can be automatically determined by the machine with high
accuracy; (2) to capture the influence of sentiment words on aspect polarities; (3) to capture the implicit relations between aspect
polarities. We present the required techniques for extracting linguistic hints, encoding their implications as well as the output of DNN
into the unified model, and joint inference. Finally, we have empirically evaluated the performance of SenHint on both English and
Chinese benchmark datasets. Our extensive experiments have shown that compared to the state-of-the-art DNN techniques, SenHint
can effectively improve polarity detection accuracy by considerable margins.

Index Terms—Deep neural networks, linguistic hints, aspect-level sentiment analysis

+

1 INTRODUCTION

ASPECT-LEVEL sentiment analysis (ALSA) [1], a fine-grained
classification task, has recently become an active research
area in NLP. Its goal is to extract the opinions expressed
towards different aspects of a product. ALSA can provide
important insights into products to both consumers and
businesses [2]. In the literature [3], two finer subtasks of
ALSA have been studied: aspect-category sentiment analysis
(ACSA) and aspect-term sentiment analysis (ATSA). ACSA
aims to predict the sentiment polarity towards a few prede-
fined aspect categories, which may not explicitly appear in
the text. ATSA instead deals with explicit aspects involving a
single word or a multi-word phrase. In this paper, we target
both ACSA and ATSA. Consider therunning example shown
inTable1, in which R; and S;; denote the review and sentence
identifiers respectively. It can be observed that in R,, the
aspect term “battery” explicitly appears in the sentence Sa,
while the sentence Sy does not explicitly contain its target
aspect term (“laptop#performance”). ACSA has to detect the
polarities of the aspects in both Sy; and Ss;. In contrast, ATSA
onlyneeds to detect the aspect polarity in Sy.
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The state-of-the-art solutions for aspect-level sentiment
analysis [4], [5] are mainly built on a variety of deep neural
networks (DNN), which can automatically learn multiple
levels of feature representation. Even though the DNN tech-
niques can achieve empirically better performance than the
previous alternatives (e.g., the techniques based on lexi-
con [6], [7] and SVM [8], [9]), their practical performance
may still fall short of expectation due to the semantic com-
plexity of natural languages. For instance, on most ACSA
tasks of the popular SemEval benchmark, the reported top
accuracy levels are only around 80 percent [1], [10].

It can be observed that natural languages provide rich
linguistic hints potentially useful for polarity reasoning. A
sentence may contain strong sentiment words that explicitly
express sentiment. In the running example, the presence of
the strong sentiment word “like”, together with the absence
of any negative word, suggests that the sentiment of the sen-
tence Si; is positive. A sentence may also contain shift
words (e.g., but and however), which do not directly indicate
polarity but explicitly specify the relationship between two
neighboring aspect polarities. Again in the running exam-
ple, the word “However” at the beginning of the sentence
S12 indicates that its polarity is opposite to the polarity of
the sentence S;;. In contrast, the absence of any shift word
between two neighboring sentences usually means that
their polarities are similar (e.g., S21 and Sas).

Unfortunately, the existing DNN techniques have limited
capability in modeling various linguistic hints. In this paper,
we propose a novel framework, SenHint, which enables
joint inference based on both DNN and linguistic hints. It
first extracts explicit linguistic hints and then encodes their
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TABLE 1
A Running Example From Laptop Reviews

R; Sij Text
R S Ilike the battery that can last long time.

! S12 However, the keyboard sits a little far back for me.
R So1 The laptop has a long battery life.

2

Sz It also can run my games smoothly.

implications as well as the output of DNN in a unified
model based on Markov logic network (MLN) [11]. We note
that it is not new to leverage linguistic hints for sentiment
analysis. The traditional lexicon-based approaches [12] used
the hints of sentiment words to directly predict polarity by
summing up all the sentiment scores; the hints of context-
sensitive sentiment words have been integrated into deep
neural networks for sentiment analysis [13], [14]; the hints
of shift words have also been used to tune the performance
of deep neural networks for sentence-level sentiment analy-
sis [15]. However, SenHint is novel in that it models both the
output of deep neural networks and the implications of lin-
guistic hints as first-class citizens in a unified MLN. Com-
pared with previous work, SenHint also leverages linguistic
hints for new purposes. For instance, it uses the hints of shift
words to capture the implicit relations between aspect
polarities for MLN reasoning.

The major contributions of this paper can be summarized
as follows:

1)  We propose SenHint, a joint inference framework for
aspect-level sentiment analysis based on MLN. Sen-
Hint can seamlessly integrate the output of DNN
and the implications of linguistic hints in a unified
model;
2) We present the required techniques for linguistic
hint extraction, MLN model construction, and joint
MLN inference;
3) We empirically evaluate the performance of SenHint
on both English and Chinese benchmark datasets.
Our extensive experiments show that compared to
the state-of-the-art DNN techniques, SenHint can
effectively improve polarity detection accuracy by
considerable margins.
Note that a prototype of SenHint has been demonstrated
in [16]. We summarize the new contributions of this techni-
cal paper as follows:

1) It proposes an improved MLN model. Besides the
implicit polarity relations indicated by the presence/
absence of shift words, the new MLN model also
encodes the influence of sentiment words on aspect
polarities;

2) It presents the improved techniques for linguistic
hint extraction, MLN model construction, and joint
inference. Unlike the demo paper, it provides with
the technical details of each proposed technique;

3) In empirical evaluation, while the demo paper only
applied SenHint to ACSA tasks, it extends SenHint
to handle both ACSA and ATSA tasks. Besides the
DNN models used in the demo paper, it also com-
pares SenHint to the more recently proposed DNN

NO. X, XXXXX2019

techniques for both ACSA and ATSA. It also sepa-
rately evaluates the effect of various linguistic hints
on the performance of SenHint. Finally, it empiri-
cally compares the new SenHint with the original
version proposed in the demo paper. The experi-
ments have shown that the new SenHint performs
evidently better.

The rest of this paper is organized as follows: Section 2
reviews more related work. Section 3 defines the task and
introduces Markov logic network, the reasoning model
underlying SenHint. Section 4 gives the overview of the pro-
posed framework. Section 5 presents the techniques of
extracting linguistic hints. Section 6 describes how to encode
the implications of linguistic hints as well as the output of
DNN in a MLN. Section 7 presents the technique of joint
inference. Section 8 presents the empirical evaluation results.
Finally, we conclude this paper with some thoughts on
future work in Section 9.

2 RELATED WORK

In general, sentiment analysis involves various tasks, such as
polarity classification, subjectivity or objectivity identifica-
tion, and multimodal fusion [17]. In this paper, we focus on
the essential task of polarity classification. Sentiment analy-
sis at different granularity levels, including document, sen-
tence, and aspect levels, has been extensively studied in the
literature [18].

Document and Sentence Level Sentiment Analysis. At the doc-
ument (resp. sentence) level, its goal is to detect the polarity
of the entire document (resp. sentence) without regard to the
mentioned aspects. The state-of-the-art approaches were
built on deep neural networks (e.g., CNN and RNN), which
include Character-level Convolutional Networks [19], Deep
Pyramid Convolutional Neural Networks [20] and Linguisti-
cally Regularized LSTM [14]. Many works proposed to com-
bine an attention mechanism with neural networks, for
instance Hierarchical Attention Network [21], Hierarchical
Query-driven Attention Network [22], Linguistic-aware
Attention Network [23] and Cognition Based Attention
Model [24]. Moreover, Self-Attention Network [25] (inspired
by the Transformer architecture), a flexible and interpretable
architecture, has been proposed for text classification. Unfor-
tunately, all these proposals can not be directly applied to
aspect-level sentiment analysis because a sentence may hold
different opinions on different aspects.

Aspect-Level Sentiment Analysis. Aspect-level sentiment
analysis needs to first extract the target aspects from a given
sentence, and then determine their sentiment polarities. The
popular models for aspect extraction, which include Atten-
tion Based Aspect Extraction [26] and Aspect Extraction
with Sememe Attentions [27], employed unsupervised
framework analogous to an autoencoder to learn the aspects
with various attention mechanisms. There also exist some
work aiming to jointly detect the aspects and identify their
sentiment polarity [28], [29].

In this paper, we instead focus on how to determine the
polarities of the given aspects in a sentence. Since deep neu-
ral networks can automatically learn high-quality features or
representations, the state-of-the-art approaches attempted to
adapt such models for aspect-level sentiment analysis. The
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TABLE 2
Frequently Used Notations

Notation Description
ti = (15, Sk, @) an aspect unit
T areview
Sk a sentence
a an aspect category or aspect term
T ={t;} a set of aspect units

o(t;)
V= {’U(tz)}

a boolean variable indicating whether
the sentiment polarity of ¢; is positive
a set of aspect polarity variables

existing work can be divided into two categories based on
the two finer subtasks of ATSA and ACSA.

For ATSA task, Dong [30] initially proposed an Adaptive
Recursive Neural Network (AdaRNN) that can employ a
novel multi-compositionality layer to propagate the senti-
ments of words towards the target. Noticing that the models
based on recursive neural network heavily rely on external
syntactic parser, which may result in inferior performance,
the following work [31] focused on recurrent neural net-
works. The alternative solutions include memory net-
works [32] and convolutional neural networks [33]. Due to
the great success of attention mechanism in machine transla-
tion [34] and question answering [35], many models based on
LSTM and attention mechanism have also been proposed.
These models, including Hierarchical Attention Network [36],
Segmentation Attention Network [37], Interactive Attention
Networks [38], Recurrent Attention Network [39], Attention-
over-Attention Neural Networks [40], Effective Attention
Modeling [41], Content Attention Model [42], Multi-grained
Attention Network [43], employed different attention mecha-
nisms to output the aspect-specific sentiment features. More
recently, the capsule networks [44], a type of artificial neural
network that can better model hierarchical relationships,
have also been leveraged for ATSA task. Chen [45] proposed
a Transfer Capsule Network for transferring document-level
knowledge to aspect-level sentiment analysis.

In comparison, there exist fewer works for ACSA because
the implicit aspects make the task more challenging.
Ruder [46] proposed a hierarchical bidirectional LSTM that
can model the inter-dependencies of sentences in a review.
Wang [47] presented an attention-based LSTM that employs
an aspect-to-sentence attention mechanism to concentrate on
the key part of a sentence given an aspect. Xue [3] introduced
a model based on convolutional neural networks and gating
mechanisms. Wang [48] presented an AS-Capsule model
that can fully employ the correlation between aspect and sen-
timent through shared components. Note that the models
proposed for ACSA can also be used for ATSA, but the ones
for ATSA usually solely benefit themselves because they
usually employ specific components to model an explicit
aspect term together with its relative context.

Other Relevant Work. Word representation, which has
been used as input by all the DNN models, plays an impor-
tant role in sentiment analysis. Traditional word representa-
tions [49] are effective at capturing semantic and syntactic
information, but they usually perform poorly in capturing
sentiment polarity. Therefore, there exist some work on
sentiment-specific work representation. For instance,

Tang [50], [51] proposed C&W based models to learn senti-
ment-specific word embedding by distant supervision for
twitter sentiment classification. Fu [52] employed local con-
text information as well as global sentiment representation
to learn sentiment-specific word embeddings.

Markov logic network, as an expressive template lan-
guage, enables joint inference based on both feature and
relational information. It has been widely applied to many
applications [11]. However, the existing approaches based
on MLN generally require human-designed features. In this
paper, we integrate the DNN output and linguistic hints
into a unified model based on MLN, which can retain the
relational reasoning ability of MLN while avoiding compli-
cated feature engineering.

3 PRELIMINARIES

In this section, we first define the task and then introduce
Markov logic network (MLN), the inference model underly-
ing SenHint.

3.1 Task Statement

For presentation simplicity, we have summarized the fre-
quently used notations in Table 2. We formulate the task of
aspect-level sentiment analysis as follows:

Definition 1 [Aspect-level Sentiment Analysis]. Let
t; = (r;, Sk, @) be an aspect unit, where r; is a review, sy is a
sentence in the review r;, and a; is an aspect associated with the
sentence si. Note that the aspect a; can be a aspect category or
aspect term, and a sentence may express opinions towards mul-
tiple aspects. Given a corpus of reviews, R, the goal of the task
is to predict the sentiment polarity of each aspect unit t; in R.

3.2 Markov Logic Network

Markov logic network combines first-order logic and proba-
bilistic graphical model in a single representation. In first-
order logic, a set of formulas represent the hard constraints
over a set of instances, and the rules can not be violated. The
basic idea of MLN is to generalize first-order logic by soften-
ing the hard constraints, assigning a weight to each formula
to indicate its strength. In MLN, the instances can violate the
formulas but need to pay a penalty: the higher the weight, the
greater the penalty to be paid. Formally, a MLN is defined as
follows:

Definition 2 [Markov Logic Network]. A MLN consists of
a collection of weighted first-order logic formulas {(F;,w;)},
where F; is a formula in first-order logic and w; is a real num-
ber indicating the level of confidence on this formula.

An example of MLN has been shown in Table 3.

Grounding. A MLN provides a template for constructing
factor graph. A factor graph consists of variable vertices
X ={z1,...,z,} and factor vertices & = {¢,, ..., ¢, }, where
each factor ¢; is a function ¢;(X;) over the variables X;
(X; € X). The factors together define a joint probability dis-
tribution over all the variables X.

Provided with a MLN and a set of constants, the process of
constructing factor graph is called grounding [53]. In the
grounding process, for each predicate and formula in MLN,
we will create a set of ground atoms and ground formulas, which
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TABLE 3
An Example of MLN and its Corresponding Predicates and Constants
Weight First-order logic Predicate Person(P) Fact
2.0 smoke(z) — cancer(x) smoke(z)(z € P) Anna friend(Anna, Bob)
30 smoke(z) A friend(z,y) cancer(z)(x € P) Bob

— smoke(y)

friend(z,y)(z,y € P)

TABLE 4

Grounding of the Example MLN (V;,; and F},

Represent Variable and Factor Respectively)

Ground factor graph

Via Ground atoms F; Ground formulas

21 smoke(Anna) fi smoke(Anna) — cancer(Anna)
xg  cancer(Anna) f2 smoke(Bob) — cancer(Bob)

T3 smoke(Bob) smoke(Anna) A friend(Anna, Bob)
T4 cancer(Bob) fs — smoke(Bob)

—_———— e ——— e — — —

Linguistic Hint Extraction

| |
| |
I shift negation sentiment :
: words words lexicon |
| —
[ | I
| - . g : P — |
| easy sentiment implicit I
| instances features relations |
I |
I _______________________ il
| Knowledge First-order logic Weight |
I DNN output dnn_posi_prob(t, p) — positive(t) w(p) |
sentiment feature has_senti_feature(t, f) — positive(t) w(f) |
| positive(t1), similar(t1, t2) — positive(t2) ws
: - . positive(t1), similar(t1, t2) —'positive(t2) Ws I
| | implicit relations
P positive(t1), opposite(t1, t2) —+positive(t2) Wo |
l Tpositive(ty), opposite(ty, to) — positive(ta) Wo I
|
|

Knowledge Encoding

Fig. 1. The framework overview of SenHint.

are represented by the variables and factors respectively in
the factor graph. The grounding process of the MLN defined
in Table 3 has been shown in Table 4

Marginal Inference. A factor graph defines a joint probabil-
ity distribution over its variables X by

%exp (Z wm{(x)> ,

where n; denotes the number of true groundings of the for-
mula £; in z, w; denotes the weight of F}, and Z is the parti-
tion function, i.e., normalization constant. The process of
computing the probability of each variable is referred to as
marginal inference.

)

P(X =) =T[40

4 FRAMEWORK OVERVIEW

As shown in Fig. 1, the framework of SenHint consists of the
following three modules:

e  Linguistic Hint Extraction: This module retrieves rele-
vant linguistic hints from reviews. It identifies easy
instances of aspect polarity, extracts common senti-
ment features shared by aspect polarities and mines
their polarity relations.

Joint Inference

Ground factor graph

DNN factor

sentiment factor

oposite factor

like

long far  smoothly

similar factor

Marginal inference

I
|
I
I
| '
I
I

o  Knowledge Encoding: This module employs weighted
first-order logic rules to encode the implications of
linguistic hints as well as the outputs of DNN into a
MLN. The outputs of DNN capture the implicit
influence resulting from multiple levels of automati-
cally learned features, while the implications of lin-
guistic hints enable explicit polarity inference.

e Joint Inference: This module constructs a ground fac-
tor graph based on the generated weighted first-
order logic rules, and then performs joint inference
on the factor graph.

The example factor graph constructed for the running
example has been shown in Fig. 1, in which aspect polarities
are represented by variables (round nodes in the figure), and
the influence of DNN output and linguistic implications are
represented by factors (box nodes in the figure). There are
two types of variables: evidence variable and inference variable.
The evidence variables represent the easy instances, whose
sentiment polarities can be directly determined by explicit lin-
guistic hints with high accuracy. They participate in the infer-
ence process, but their values are specified beforehand and
remain unchanged throughout the whole process. The infer-
ence variables represent the more challenging instances. Their
values should instead be inferred based on the factor graph.
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Additionally, there are four types of factors: DNN factor,
sentiment factor, similar factor and opposite factor. The DNN
factor simulates the effect of DNN output on polarity. The
sentiment factor captures the influence of sentiment fea-
tures. The similar factor and opposite factor encode the rela-
tions between aspect polarities.

5 LINGUISTIC HINT EXTRACTION

In this section, we describe how to identify easy instances,
extract sentiment features and mine polarity relations by
linguistic hints.

5.1 Identifying Easy Instances
The existing lexicon-based approaches essentially reason
about polarity by summing up the polarity scores of the sen-
timent words in a sentence. However, they are prone to error
under some ambiguous circumstances. First, the presence of
contrast (e.g., but and although), hypothetical (e.g., if) or con-
dition (e.g., unless) connectives could significantly compli-
cate polarity detection. For instance, the sentence “would be
a very nice laptop if the mousepad worked properly”
contains only the positive sentiment words “nice” and
“properly”, but it holds negative attitude due to the presence
of the hypothetical connective “if”. Second, the presence of
negation words involving long-distance dependency could
also make the task challenging. For instance, in the sentence
“I don’t really think the laptop has a good battery life”, the
negation word “don’t” reverses the polarity, but it is far
away from the sentiment word “good”. Unfortunately, the
existing approaches for negation detection based on local
neighborhood [12] can not work properly in the circum-
stance of long-distance dependency. Finally, a sentence may
not contain strong sentiment words, or even if it does, multi-
ple sentiment words may hold conflicting polarities. For
instance, consider the sentence “To be honest, i am a little
disappointed and considering returning it”. Since it contains
both the positive word “honest” and the negative word
“disappointed”, its true polarity is not easily detectable
based on sentiment word scoring.

Therefore, for easy instance identification, SenHint choo-
ses to exclude the instances with the aforementioned ambig-
uous patterns. Specifically,

Definition 3 [Easy Instances]. SenHint identifies an aspect
polarity as an easy instance if and only if the sentence express-
ing opinions about the aspect satisfies the following three
conditions:

e [t contains at least one strong sentiment word, but does
not simultaneously contain any sentiment word hold-
ing the conflicting polarity;

o It does not contain any contrast, hypothetical or condi-
tion connective;

o It does not contain any negation word involving long-
distance dependency;

In SenHint, the polarity of an easy instance is simply
determined by the polarity of its strong sentiment word. Sen-
Hint considers a sentiment word as strong if and only if the
absolute value of its score exceeds a pre-specified threshold
(e.g., 1.0 in our experiment, where the scores of sentiment

words are normalized into the interval of [-4,4]). Moreover, a
negation word is supposed to involve long-distance depen-
dency if and only if it is not in the neighboring 3-grams pre-
ceding any sentiment word. We illustrate the difference
between the easy and challenging instances by Example 1.

Example 1 [Easy Instances]. In a phone review, the sen-
tence “the screen is not good for carrying around in your
bare hands”, which expresses the opinion about “screen”,
is an easy instance, because the sentiment word “good”
associated with the local negation cue “not” strongly indi-
cates the negative sentiment. In contrast, the sentence “I
don’t know why anyone would want to write a great
review about this battery”, which expresses the opinion
about “battery”, is not an easy instance. Even though it
contains the strong sentiment word “great”, it includes the
negation word “don’t” involving long-distance depen-
dency. Similarly, the sentence “I like this laptop, the only
problem is that it can not last long time” is not an easy
instance, because it contains both the positive and negative
words (e.g., “like” and “problem”).

5.2 Extracting Sentiment Features

Sentiment words usually play an important role in deter-
mining the aspect polarities in a sentence. Accordingly, two
sentences sharing a sentiment word usually have the same
sentiment polarity. Hence, SenHint extracts the common
sentiment words from sentences and model their influence
by feature factors in the unified MLN model. Sentiment fea-
tures include both the generic sentiment words in an open-
source lexicon developed by Liu [2], or the domain-specific
sentiment words' that can be automatically mined from the
unlabeled review corpora. Since negation words can effec-
tively reverse polarity, we also perform negation detection
for each sentiment word by examining whether there is any
negation in its neighboring words.

To enable more accurate influence modeling, we also
propose to filter sentiment features based on the syntactic
structure of sentence. First, SenHint uses the constituency
based parse tree [54] to identify sentence structure (e.g.,
compound or complex) and then determines the important
part of a sentence based on the structure. Specifically, if a
sentence describes only one aspect and has a compound
structure with the coordinating conjunction “but”, we only
retain the sentiment features appearing in the “but” clause.
Second, in the case that multiple aspects are opined in a sen-
tence, SenHint uses the dependency based parse tree [55] to
extract the opinion phrases, each of which is a pair of opin-
ion target and word, for the mapping between the sentiment
features and their target aspects. Specifically, it associates an
opinion word (corresponding to a sentiment feature) with
an aspect if and only if either its opinion target or the opin-
ion word itself is close to the aspect term in the vector space.
We illustrate sentiment feature extraction by Example 2.

Example 2 [Sentiment Feature Extraction]. Consider the
sentence, “I thought learning the Mac OS would be hard,
but it is easily picked up”, which expresses the opinion
about the aspect “os#usability”. SenHint extracts “easily”

1. http://www.wowbigdata.cn/SenHint/SenHint.htm]l
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as sentiment feature but not “hard”, because the word
“hard” does not appear in the “but” clause. Consider
another example, “The screen is gorgeous, and the perfor-
mance is excellent.”, which comments on both aspects
of “display#quality” and “laptop#performance”. SenHint
extracts two opinion phrases (screen,gorgeous) and
(per formance, excellent), and then reasons that 1)
“gorgeous” is a feature of the aspect “display#quality”
because its opinion target “screen” is very close to the
aspect in vector space; 2) “excellent” is a feature of the
aspect “laptop#performance” because the aspect term
explicitly appears in the opinion phrase.

5.3 Mining Polarity Relations
Modeling sentences independently, the existing DNNs for
aspect-level sentiment analysis have very limited capability
in capturing contextual information at sentence level. How-
ever, sentences build upon each other. There often exist some
discourse relations between sentences that can provide valu-
able hints for sentiment prediction [56]. The most influential
discourse relation is the contrast relation, which is often
marked by shift words (e.g., but and however). Specifically,
two sentences connected with a shift word usually have oppo-
site polarities. In contrast, two neighboring sentences without
any shift word between them usually have similar polarities.
Based on these observations, SenHint extracts the similar
and opposite relations between aspect polarities based on
sentence context. Given two aspect units ¢; = {ri, Si, ai} and
t; = {rj,sj,a;} that occur in the same review (namely
r; = r;), the rules for extracting polarity relations are defined
as follows:

1)  If the sentences s; and s; are identical (s;=s;) or adja-
cent and neither of them contains any shift word, ¢;
and ¢; are supposed to hold similar polarities;

2) If two adjacent sentences s; and s; are connected by a
shift word and neither of them contains any inner-
sentence shift word, ¢; and ¢; are supposed to hold
opposite polarities;

3) If the sentences s; and s; are identical and the opin-
ion clauses associated with them are connected by a
inner-sentence shift word, ¢; and t; are supposed to
hold opposite polarities.

We illustrate polarity relation mining by Example 3.

Example 3 [Polarity Relation Mining]. In the running
example shown in Table 1, the aspect polarities in S5; and
Say are supposed to be similar based on the 1st rule. Since
S and S in Ry are connected by the shift word of
“However”, their aspect polarities are reasoned to be
opposite based on the 2nd rule. Additionally, consider the
sentence “The screen is bright but the processing power is
not very good”, which expresses the opinions about both
“screen” and “processing power”. It can be observed that
the two opinion clauses are connected by the shift word
“but” within the sentence. Therefore, their polarities are
supposed to be opposite based on the 3rd rule.

6 KNOWLEDGE ENCODING IN MLN

Note that SenHint models the easy instances of aspect polar-
ity as evidence variables in MLN. In this section, we describe
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how to encode the output of DNN, sentiment features and
polarity relations in MLN.

6.1 Encoding DNN Output
In this paper, we use the recently proposed gated convo-
lutional networks [3] (GCAE) as an illustrative example.
The outputs of other DNNs can however be encoded in
SenHint in the same way. GCAE uses convolutional neu-
ral networks and gating mechanisms to selectively output
the sentiment features associated with a given aspect. Its
output can indicate the influence resulting from multiple
levels of features that correspond to different levels of
abstraction.

SenHint encodes the influence of DNN outputs using the
following rule:

w(p) : dnn_posi_prob(t,p) — positive(t), (2)
in which dnn_posi_prob(t, p) predicates that the probability
of an aspect unit ¢ having the positive polarity is equal to
the value of p, positive(t) is a boolean variable indicating the
polarity of t, and w(p) denotes the level of confidence on the
rule. Observing that the relationship between the weight w
and the probability p (for a boolean variable x being true)
can be expressed by p(z =1) =¢"/(1+¢€"), we define the

rule weight as
L ) : (3)
—-p

According to Eq. (3), w(p) > 0 if p > 0.5; otherwise, if
p < 0.5, then w(p) < 0. In the case of w(p) > 0, a zero
value of positive(t) would invoke a cost penalty as desired.

In the case of w(p) < 0, a positive value for positive(t)
would instead invoke a cost penalty.

w(p) = In (1

6.2 Encoding Sentiment Features
SenHint encodes the influence of sentiment features using
the following rule:

w(f) : has_senti_feature(t, ) — positive(t), 4)
where has_senti_feature(t, f) predicates that the aspect unit
t has the sentiment feature f, and w(f) denotes the feature
weight. In our implementation, the weight of a sentiment
feature is initially set to 1 if it is a positive word in the lexi-
con, or -1 if it is a negative word. Based on the labeled
instances, SenHint learns the weights of sentiment features
in joint inference, and their learned values are supposed to
reflect their sentiment intensity. For instance, in the factor
graph as shown in Fig. 1, the variable v; contains two senti-
ment features “like” and “long”, and the sentiment feature
of “long” is also shared by wv;. Both sentiment features
have positive weights, and the learned weight of “like”
holds a higher value than the learned weight of “long”.
Their weights accurately reflect their relative sentiment
intensity.

6.3 Encoding Polarity Relations
SenHint encodes the influence of similar relation between
two aspect polarities by
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wy @ positive(tr), similar(ty,ta) — positive(ts), ()
and
ws : Ipositive(ty), similar(ti, t2) — positive(ts), (6)

in which w, denotes a positive weight, ¢; and ¢, denote two
aspect units and !positive(t;) denotes the negation of a bool-
ean variable. For instance, in the factor graph as shown in
Fig. 1, there exists a similar relation between v and vy,
which represent the instances in S»; and S, respectively.
As expected, the encoding rules of Eqs. (5) and (6) would
force them to hold similar polarity, otherwise a cost penalty
would be invoked.

Similarly, SenHint encodes the influence of opposite rela-
tion between two aspect polarities by

w, : positive(ty), opposite(ty, ty) — Ipositive(ts), @)
and
w, : Ipositive(ty), opposite(ty, ta) — positive(ts), ()]

in which w, denotes a positive weight.

SenHint interprets rule weight or confidence on rule as
the accuracy of mined relations. With the polarity of ¢, being
positive, the probability of the polarity of t; being positive
can be estimated by

p(u(tz) = 1) = €™/ (1 +e™). ©)
Approximating p(v(ty) = 1) with the accuracy r,., we can

establish the relationship between rule weight and relation

accuracy by
w, = In [ —1%c
° 1- Tace .

SenHint sets the rule weight w, specified in (7) and (8) in
a similar way. Note that the the higher the estimated accu-
racy, the higher the rule weights. For accuracy estimation,
SenHint first applies the mining rules to the labeled data
used for DNN training, and then approximates the accuracy
on the test data with the result observed on the training
data. Our empirical evaluation in Section 8.3 has shown that
the accuracies achieved on the test data are generally high,
and very similar to the results observed on the training data
in most cases.

(10

7 JOINT INFERENCE

The MLN model of SenHint is comprised of the formulas
specified in Eqs. (2), (4), (5), (6), (7) and (8). Based on the
model, SenHint first constructs a factor graph, and then esti-
mates the marginal probabilities of inference variables.

Denoting the DNN, sentiment, similar, opposite factors by
¢Z”"(~), ¢;€""(~), ¢ (-,-), ¢(-,-) respectively, SenHint
defines them as follows:

o e0) = { Loy D=1 an
o700 ={ i 1) 2 2

sim , _ 1 U(tl) I'= U(tZ)v

¢ (U(tl)v U(tZ)) - {ew,g ’“(7(1) — 1_2 (13)
o 1 U(tl) = ’U(tg),
PP —

oo ={ g ) ) (11
where v(t) denotes a boolean variable indicating the polar-
ity of t, and w(p), w(f), ws and w, denote the rule weights.

Based on the factors, the factor graph defines a joint prob-
ability distribution over its variables V' by
1 sent
Pu(V) = [T o™ @®) I ] #7 (v(®)
veV veV feF, (15)
[T & (olt)ou(ta).
(t1,t2)ER

where F, denotes the set of sentiment features associated
with the variable v, R denotes the sets of polarity relations
between aspect units, rel_type denotes the relation type of
the aspect units ¢; and ¢, (namely sim or opp) and Z denotes
a partition function, i.e., normalization constant.

Given a factor graph with some labeled evidence varia-
bles, SenHint reasons about the factor weights by minimiz-
ing the negative log marginal likelihood as follows:

W = argmin —logZPu,(A,V[), (16)
w I/I

where A denotes the observed labels of evidence variables
and V7 denotes the set of inference variables. The objective
function effectively learns the factor weights most consistent
with the label observations of the evidence variables. SenHint
optimizes the objective function by leveraging the Snorkel
engine [57], which interleaves stochastic gradient descent
steps with Gibbs sampling ones. It has been shown in [57],
[58] that similar to contrastive divergence [59], the optimiza-
tion process can guarantee convergence. For more details,
please refer to the literature of [57], [58]. Note that in our
implementation, the weights w(p), w;, s, are automatically set
to be fixed values based on the formulas of Egs. (3) and (10),
while the weight w(f) is learned by optimizing the objective
function. Once the weights are learned, SenHint performs
marginal inference over the factor graph to compute the prob-
ability distribution for each inference variable v(t) € V. Sen-
Hint uses the Numbskull library” for marginal inference.

8 EMPIRICAL EVALUATION

In this section, we empirically evaluate the performance of
SenHint on the benchmark datasets by a comparative study.
We compare SenHint with the state-of-the-art DNN models
proposed for ACSA and ATSA. For the ACSA tasks, the
compared models include:

e H-LSTM [46]. The hierarchical bidirectional LSTM
can model the inter-dependencies of sentences in a
review;

o AT-LSTM[47]. The Attention-based LSTM (AT-LSTM)
employs an attention mechanism to concentrate on the
key parts of a sentence given an aspect, where the

2. https:/ /github.com/HazyResearch /numbskull
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TABLE 5
Details of Benchmark Datasets

D L Train Test

ata ANBUIEE  4T(ACSA) #T(ATSA) #T(ACSA) #T(ATSA)
PHO16 Chinese 1333 — 529 —
CAM16 Chinese 1259 — 481 —
LAPl6  English 2715 1478 751 435
RESI6  English 2134 1662 693 578
LAP15  English 1864 1049 868 410
RES15  English 1410 1154 725 508

aspect embeddings are used to determine the attention
weight;

o ATAE-LSTM [47]. The Attention-based LSTM with
Aspect Embedding (ATAE-LSTM) extends AT-LSTM
by appending the input aspect embedding into each
word input vector;

o GCAE [3]. The gated convolutional network employs
CNN and gating mechanisms to selectively output
the sentiment features according to a given aspect.

For the ATSA, the compared models inlcude:

e IAN [38]. The interactive attention network interac-
tively learns the attentions in the contexts and tar-
gets, and generates the representations for targets
and contexts separately;

o RAM [39]. The multiple-attention network can effec-
tively capture sentiment features separated by a long
distance, and is usually more robust against irrele-
vant information;

e AOA/[40]. The attention-over-attention network mod-
els aspects and sentences in a joint way, and can
explicitly capture the interaction between aspects and
context sentences;

o TNet [33]. Compared with previous alternatives, the
target-specific transformation network can better inte-
grate target information into the word representations.

The rest of this section is organized as follows: Section 8.1

describes the experimental setup. Section 8.2 presents the
comparative evaluation results. Section 8.3 separately evalu-
ates the effect of easy instances, sentiment features and
aspect polarity relations on the performance of SenHint.
Finally, Section 8.4 presents the results of error analysis on
SenHint for its future improvement.

8.1 Experimental Setup

We used the benchmark datasets in four domains (phone,
camera, laptop and restaurant) and two languages (Chinese
and English) from the SemEval 2015 task 12 [10] and 2016
task 5 [1]. Our experiments performed 2-class classification
to label an aspect polarity as positive or negative, and thus
ignored the neutral instances in our experiments. The statis-
tics of the test datasets are presented in Table 5, in which
PHO, CAM, LAP and RES denote the domain phone, cam-
era, laptop and restaurant respectively, and #T(ACSA) and
#T(ATSA) denote the numbers of aspect category units and
aspect term units respectively. Since there are no labeled
aspect terms in the Chinese datasets, we compare SenHint
to its alternatives only on the English datasets for ATSA.
Note that given a test dataset, the number of instances in its
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factor graph is equal to the number of aspect category units
or aspect term units it contains.

In our experiments, we used the GCAE model to predict
the DNN output, because it has been empirically shown to
outperform other DNN alternatives. However, SenHint can
easily integrate any other DNN model into its MLN. For iden-
tifying easy instances, we used the Opinion Lexicon® and
EmotionOntology”* lexicons for English and Chinese data
respectively. Due to their limited numbers, we manually spec-
ified the negation and shift words. In the implementation of
SenHint joint inference, the number of learning and inference
epochs is set at 1,000, the step size for learning is set at 0.01,
the decay for updating step size is set at 0.95, and the regulari-
zation penalty is set at 1¢ — 6. More details on the experimen-
tal setup can be found in our technical report [60]. Our
implementation codes have also been made open-source.”

8.2 Comparative Evaluation

We have compared performance on both metrics of accuracy
and macro-F1. Note that the metric of macro-F1 is the
unweighted average of the F1-score for each label. The com-
parative results on the ACSA and ATSA tasks are presented
in Tables 6 and 7 respectively, in which SenHint(demo) denotes
the original model presented in our demo paper [16] and Sen-
Hint denotes the improved model proposed in this paper. We
have highlighted the best performance on each test task by
bold in the tables. It can be observed that for ACSA, SenHint
achieves better performance than the DNN approaches on all
the test datasets. It achieves the improvement of more than 4
percent on 5 out of totally 6 tasks (i.e., PHO16, CAMIé,
LAP16, LAP15 and RES15). For ATSA, the experimental
results are similar. SenHint outperforms the best DNN model
by around 7 percent on LAP15 and LAP16, and by around 4
percent on RES15. Due to the widely recognized challenge of
sentiment analysis, the achieved improvements can be con-
sidered to be very considerable. These experimental results
clearly demonstrate the efficacy of SenHint.

It is also worthy to point out that SenHint consistently
performs better than SenHint(demo). The achieved improve-
ments on most tasks are between 1 and 3 percent. The maxi-
mal improvement of around 3.5 percent is achieved on the
LAP16 workload of ATSA. The only exception is PHO16, on
which SenHint performs slightly worse than SenHint(demo)
by less than 0.1 percent if measured by macro-F1. Our
experimental results have evidently validated the efficacy
of the improved MLN model proposed in this paper.

To further validate the efficacy of extracted linguistic
hints, we have also conducted ablation test on both ACSA
and ATSA tasks. The evaluation results have been shown in
Tables 6 and 7, where SenHint(w/o easy), SenHint(w/o senti-
feats) and SenHint(wjo relations) denote the ablated models
with the components of easy instances, sentiment features
and polarity relations being removed from SenHint respec-
tively. It can be observed that: 1) SenHint achieves better
performance than the ablated models in most cases with
only a few exceptions. It means that all the extracted

3. https:/ /www.cs.uic.edu/~liub/FBS/sentiment-analysis.
html~liub/FBS/sentiment-analysis.html

4. http:/ /ir.dlut.edu.cn/EmotionOntologyDownload

5. http://www.wowbigdata.cn/SenHint/SenHint.htm]l
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TABLE 6
Performance Comparison for ACSA on Benchmark Datasets
Model PHO16 CAM16 LAP16 RES16 LAP15 RES15
ode Acc Macro-F1 ~ Acc  Macro-F1 ~ Acc  Macro-F1 ~ Acc Macro-F1 ~ Acc  Macro-F1 ~ Acc Macro-F1
H-LSTM 7330% 72.59% 78.80% 73.04% 7890% 77.18%  83.10% 79.48% 80.00% 7825% 77.10% 76.15%
AT-LSTM 7240% 72.16% 81.70% 7742% 76.03% 74.73%  85.03%  80.57% 81.03% 79.10% 77.25% 77.00%
ATAE-LSTM 74.48% 73.85% 83.36% 79.59% 79.07% 77.10%  84.66%  80.50% 80.68% 7897% 79.13% 77.83%
GCAE 76.03% 7549% 8249% 76.72% 80.75% 79.24%  86.87%  83.07% 81.96% 80.56% 81.49% 80.45%
SenHint(demo) 80.45% 80.20% 86.58% 82.89% 83.07% 81.71%  88.09%  84.73% 84.60% 83.46% 82.50% 81.78%
SenHint(w/o easy) 80.72%  80.08%  87.82% 84.29% 8557% 84.26%  89.32% 86.01% 87.28% 86.20% 85.24% 84.58%
SenHint(w/o senti-feats) 80.08% 79.53% 87.53% 83.87% 84.69% 83.28% 89.00% 85.73%  86.84% 85.75% 85.43% 84.84%
SenHint(w/o relations)  80.00% 79.40% 87.82% 84.37% 82.61% 81.24% 87.07% 83.40% 86.08% 85.01% 83.83% 83.06%
SenHint 80.89% 80.15% 88.10% 84.47% 85.60% 84.28%  89.09%  85.72% 87.46% 86.40% 85.84% 85.34%
TABLE 7
Performance Comparison for ATSA on Benchmark Datasets
Model LAP16 RES16 LAP15 RES15
ode Acc Macro-F1 Acc Macro-F1 Acc Macro-F1 Acc Macro-F1

AT-LSTM 74.85% 72.39% 84.43% 77.50% 77.51% 74.41% 75.43% 71.57%
ATAE-LSTM 75.08% 71.93% 84.60% 76.82% 77.66% 73.83% 74.13% 69.67%
GCAE 78.34% 75.74% 88.86% 81.93% 81.37% 79.08% 77.60% 71.81%
IAN 74.02% 71.90% 85.12% 77.01% 79.27% 76.30% 75.00% 69.34%
RAM 77.47% 75.33% 85.81% 78.44% 78.58% 76.33% 73.23% 66.33%
AOA 74.94% 72.27% 87.02% 75.83% 80.73% 77.84% 73.43% 69.71%
TNet 75.86% 73.85% 87.20% 80.20% 80.00% 78.88% 75.20% 71.32%
SenHint(demo) 82.75% 80.98% 89.65% 83.25% 86.47% 84.75% 81.17% 77.53%
SenHint(w/o easy) 85.47% 83.82% 89.79% 84.08% 87.90% 86.28% 80.87% 76.73%
SenHint(w /o senti-feats) 84.78% 83.22% 89.69% 84.03% 87.66% 86.10% 81.77% 78.10%
SenHint(w/o relations) 84.32% 82.53% 88.93% 82.91% 87.27% 85.66% 81.02% 77.02%
SenHint 86.19% 84.65% 89.68% 84.12% 87.98% 86.41% 81.66% 77.98%

linguistic hints are helpful for polarity reasoning; 2) Among
the ablated models, SenHint(w/o relations) achieves the
overall worst performance, followed by SenHint(w /o senti-
feats) and SenHint(w/o easy). It means that the influence of
polarity relations on the performance of SenHint is the
greatest, followed by sentiment features and easy instances.

It can also be observed that the improvement margins of
SenHint over SenHint(w/o easy) and SenHint(w/o senti-feats)
are very similar on the English and Chinese datasets; how-
ever, the influence of polarity relations is greater on the
English datasets than the Chinese datasets. In the experi-
ments, we have observed that more polarity relations can be
extracted from the English datasets than the Chinese data-
sets, and they are generally accurate. Therefore, as shown in
Table 6, SenHint outperforms the ablated model of SenHint
(wjfo relations) by more considerable margins on the English
datasets than the Chinese datasets.

TABLE 8
Performance Evaluation of Identifying Easy Instances

ACSA
LAP16 RES16

46.34% 55.70%
90.80% 92.75%
93.68% 93.01%

LAP15

54.72%
88.76%
95.16%

RES15

47.17%
88.54%
93.57%

PHO16

Prop 35.73%
Acc(GCAE)  86.35%
Acc(SenHint) 95.24%

CAM16

43.87%
87.49%
98.58%

8.3 Separate Effect Evaluation

In this subsection, we report our evaluation results on the
ACSA tasks. The evaluation results on the ATSA tasks are
similar, thus omitted here due to space limit. But they can
be found in our technical report [60].

Easy Instances. We first evaluate the performance of the
technique proposed for identifying easy instances. We com-
pare its performance with the best DNN model of GCAE.
Note that SenHint identifies easy instances by pre-specified
rules. Therefore, for SenHint, the percentage of easy instan-
ces, which is calculated by dividing the number of easy
instances by the total number of instances in a test dataset,
is fixed for each test dataset. For fair comparison, we also
select the same number of least uncertain instances in a test
dataset based on the output of GCAE, and then compare
the achieved accuracy of SenHint and GCAE. The detailed
results on the ACSA tasks are presented in Table 8, in which

TABLE 9
Performance Comparison Between GCAE and SenHint-Easy
ACSA
PHOl6 CAMl16 LAPl6 RES16 LAP15 RESI5
GCAE 76.03% 82.49% 80.75% 86.87% 81.96% 81.49%
SenHint-easy 79.23% 87.32% 82.13% 86.97% 85.50% 83.82%
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TABLE 10
Performance Evaluation of Polarity Relation Mining
ACSA

Relation type Data type PHO16 CAM16 LAPle RES16 LAP15 RES15

- . train 89.39% 88.89% 92.57% 95.12% 93.39% 96.07%
similar relations test 85.71% 92.13% 93.38% 95.34% 90.51% 92.53%

. . train 75.00% 89.29% 83.33% 72.22% 80.00% 75.00%

opposite relations test 100% 90.00% 50.00% 66.67% 100% 60.00%

the first row (Prop) denotes the percentage of easy instances
identified by SenHint, and the following two rows (Acc)
denote the accuracy of GCAE and SenHint respectively. It
can be observed that

1) A considerable percentage of the instances in a test
workload can be identified as easy instances by Sen-
Hint: the percentage varies from 35 to 55 percent;

2) SenHint detects the polarities of easy instances with
the consistently higher accuracy than GCAE, and the
improvement margins are considerable. On PHO16
and CAM16, the margins are as large as 9-10 percent;

We then evaluate the effect of identified easy instances on
the performance of SenHint by comparing SenHint-easy
with GCAE, in which SenHint-easy represents the MLN
model using the outputs of DNN and easy instances but
not mined sentiment features and polarity relations. The
detailed results are presented in Table 9. It can be observed
that the MLN model of using easy instances alone can effec-
tively improve the performance of polarity classification. On
the difference between the English and Chinese datasets, we
have observed that a higher percentage of instances can be
identified as easy on the English datasets, but the achieved
accuracy is generally lower. Overall, their effect on the per-
formance of SenHint are quite similar on the English and
Chinese datasets.

Polarity Relations. We first evaluate the performance of
the technique proposed for mining polarity relations. The
detailed results are presented in Table 10, which reports the
accuracy of mined relations on both training and test data.
As expected, the achieved accuracies on the test data are
generally similar to the results obtained on the training
data. Most importantly, the accuracy of mined relations is
high (> 80%) in most cases.

We then compare SenHint-rel with GCAE, in which
SenHint-rel denotes the MLN model integrating DNN out-
puts and mined polarity relations but not easy instances and
sentiment features. The comparative results are presented in
Table 11. It can be observed that SenHint-rel can effectively
improve the performance of DNN. These observations vali-
date the effectiveness of the proposed strategy, which
assigns different weights to relations such that a relation

with higher accuracy can have greater impact on its con-
nected variables.

Sentiment Features. We evaluate the effect of extracted sen-
timent features on the performance of SenHint by comparing
GCAE with SenHint-sent, in which SenHint-sent denotes the
MLN model integrating DNN output and extracted senti-
ment features but not easy instances and mined polarity rela-
tions. Their comparative results are presented in Table 12.
We can observe that SenHint-sent can effectively improve
the performance of DNN. These experiments validate the
effectiveness of the proposed strategy for integrating com-
mon sentiment features into the MLN model.

8.4 Error Analysis

For the improvement of SenHint in the future, it is helpful to
scrutinize its failure cases. We have categorized the failure
cases into the following categories:

o  Lack of linguistic hints. This type of error occurs when
no linguistic hint has been extracted from a sentence.
If an instance does not any extracted linguistic hint,
its predicted polarity is the same as the DNN output.
For instance, consider the single sentence in a review,
“I would have kept it but that was the sole reason for
my purchase” , which expresses the opinion about
“laptop#general”. It contains neither sentiment fea-
ture nor polarity relation. Since it is mislabeled by
DNN, SenHint also fails.

e Incorrect linguistic hints. This type of error occurs when
the extracted linguistic hints are incorrect. Most of the
errors under this category can be further categorized
into the following two subcategories: 1) the instances
are incorrectly identified as easy; 2) the extracted
polarity relations are erroneous. For the first subcate-
gory, consider the sentence, “I have to clean it regu-
larly for it to stay looking good”. SenHint identifies it
as an easy instance with the positive polarity. How-
ever, its true polarity is negative. For the second sub-
category, consider two neighboring sentences, “it
looks sleek ad gorgeous” and “i find myself adjusting
it regularly”. Since they are not connected by any shift
word, SenHint reasons that their polarities are similar.

TABLE 11 TABLE 12
Performance Comparison Between GCAE and SenHint-Rel Performance Comparison Between GCAE and SenHint-Sent
ACSA ACSA
PHO16 CAMI6 LAPl6 RESI6 LAPI5 RESI5 PHO16 CAMI16 LAPl6 RES16 LAPI5 RESI5
GCAE 76.03% 82.49% 80.75% 86.87% 81.96% 81.49% GCAE 76.03% 82.49% 80.75% 86.87% 81.96% 81.49%
SenHint-rel 76.88% 82.58% 83.70% 90.93% 84.72% 82.33% SenHint-sent 78.26% 85.25% 81.67% 87.39% 84.09% 82.00%
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TABLE 13
Distribution of Classification Errors
No. Error category Percentage
1 Lack of linguistic hints 32.11%
2 Incorrect linguistic hints 30.28%
3 Ineffectual linguistic hints 25.69%
4 Others 11.92%

However, they are indeed opposite. SenHint first iden-
tifies the polarity of the first sentence as positive and
then incorrectly labels the polarity of the second sen-
tence as positive based on the extracted polarity
relation.

o Ineffectual linguistic hints. In this case, even though the
extracted linguistic hints are correct, they fail to
correct the erroneous outputs of DNN. For instance,
consider two neighboring instances with the same
positive polarity. Even though SenHint correctly
extracts the similar polarity relation between them, it
may still fails under the following two circumstances:
1) DNN erroneously labels both instances as negative.
Since the erroneous outputs of DNN happen to satisfy
the supposed relation, SenHint can not flip their
polarities; 2) DNN correctly identifies one of them as
positive with a lower confidence (e.g., 0.6) while erro-
neously identifying the other one as negative with a
higher confidence (e.g., 0.05). Instead of correcting the
error of DNN, SenHint may flip the polarity of the cor-
rectly identified instance from positive to negative.

Using the ACSA task on LAP16 as the test case, we have

given the relative percentages of different error classes in
Table 13. It can be observed that the error class of Lack of Lin-
guistic Hints occupies the largest portion, followed by Incor-
rect Linguistic Hints, which comes second. Thus, improving
the accuracy and coverage of linguistic hints extraction may
greatly enhance the performance of SenHint.

9 CONCLUSION

In this paper, we have proposed the SenHint framework for
aspect-level sentiment analysis that can integrate deep neu-
ral networks and linguistic hints in a coherent MLN infer-
ence model. We have presented the required techniques for
extracting linguistic hints, encoding their implications into
the model, and joint inference. Our extensive experiments
on the benchmark data have also validated its efficacy.

Built on DNN, SenHint still requires considerable train-
ing data. It is interesting to observe that provided with suffi-
cient review corpus, employing easy instance detection,
extracted sentiment features and polarity relations can
potentially make it unnecessary to classify aspect polarity
by DNN. In future work, we will explore how to make Sen-
Hint perform well while requiring little or even no labeled
training data.
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