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Gradual Machine Learning for Entity Resolution
Boyi Hou, Qun Chen, Yanyan Wang, Youcef Nafa, and Zhanhuai Li

Abstract—Usually considered as a classification problem, entity resolution (ER) can be very challenging on real data due to the
prevalence of dirty values. The state-of-the-art solutions for ER were built on a variety of learning models (most notably deep neural
networks), which require lots of accurately labeled training data. Unfortunately, high-quality labeled data usually require expensive
manual work, and are therefore not readily available in many real scenarios. In this paper, we propose a novel learning paradigm for
ER, called gradual machine learning, which aims to enable effective machine labeling without the requirement for manual labeling
effort. It begins with some easy instances in a task, which can be automatically labeled by the machine with high accuracy, and then
gradually labels more challenging instances by iterative factor graph inference. In gradual machine learning, the hard instances in a
task are gradually labeled in small stages based on the estimated evidential certainty provided by the labeled easier instances. Our
extensive experiments on real data have shown that the performance of the proposed approach is considerably better than its
unsupervised alternatives, and highly competitive compared to the state-of-the-art supervised techniques. Using ER as a test case, we
demonstrate that gradual machine learning is a promising paradigm potentially applicable to other challenging classification tasks
requiring extensive labeling effort.

Index Terms—Gradual Machine Learning, Entity Resolution, Unsupervised Learning, Factor Graph Inference
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1 INTRODUCTION

The task of entity resolution (ER) aims at finding the
records that refer to the same real-world entity [15]. Con-
sider the running example shown in Figure 1. ER needs to
match the paper records between two tables, T1 and T2. The
pair of < r1i, r2j >, in which r1i and r2j denote a record
in T1 and T2 respectively, is called an equivalent pair if and
only if r1i and r2j refer to the same paper; otherwise, it is
called an inequivalent pair. In the example, r11 and r21 are
equivalent while r11 and r22 are inequivalent. The state-of-
the-art solutions for ER were built on a variety of learning
models (e.g. deep neural network (DNN) [35]), which re-
quire lots of accurately labeled training data. Unfortunately,
high-quality labeled data usually require expensive manual
work, and therefore, may not be readily available in many
real scenarios.

T1

T2

Fig. 1. An ER Example

It can be observed that the dependence of the existing su-
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pervised learning models on high-quality labeled data is not
limited to the task of ER. The dependence is actually crucial
for their huge success in various domains (e.g. image and
speech recognition [50]). However, it has been well recog-
nized that in some real scenarios, where high-quality labeled
data is scarce, their efficacy can be severely compromised. To
address the limitation resulting from such dependence, we
propose a novel learning paradigm, called gradual machine
learning, in which gradual means proceeding in small stages.
Gradual machine learning aims to enable effective machine
labeling without the requirement for manual labeling effort.
Inspired by the gradual nature of human learning, which
is adept at solving the problems with increasing hardness,
it begins with some easy instances in a task, which can be
automatically labeled by the machine with high accuracy,
and then gradually reasons about the labels of the more
challenging instances based on the observations provided
by the labeled easier instances.

We note that there already exist many learning
paradigms for a variety of classification tasks, including
transfer learning [36], lifelong learning [13], curriculum
learning [5], self-paced learning [28] and self-training learn-
ing [31] to name a few. Transfer learning focused on using
the labeled training data in a domain to help learning in
another target domain. Lifelong learning studied how to
leverage the knowledge mined from past tasks for the cur-
rent task. Curriculum learning investigated how to organize
a curriculum (the presenting order of training examples)
for improved model training. Self-training learning aimed
to improve the performance of a supervised learning algo-
rithm by incorporating unlabeled data into the training data
set. More recently, Snorkel [38] aimed to enable automatic
and massive machine labeling by specifying a wide variety
of labeling functions. The results of machine labeling were
supposed to be fed to DNN for model training. However,
the following two properties of gradual machine learning
make it fundamentally different from the existing learning
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paradigms:

• Distribution misalignment between easy and hard
instances in a task. Gradual machine learning pro-
cesses the instances in the increasing order of hard-
ness. Its scenario does not satisfy the i.i.d (indepen-
dent and identically distributed) assumption under-
lying most existing machine learning models: the
labeled easy instances are not representative of the
unlabeled harder instances. The distribution mis-
alignment between the labeled and unlabeled in-
stances renders most existing learning models unfit
for gradual machine learning.

• Gradual learning by small stages in a task. Gradual
machine learning proceeds in small stages. At each
stage, it typically labels only one instance based
on the evidential certainty provided by the labeled
easier instances. The process of iterative labeling can
be performed in an unsupervised manner without
requiring any human intervention.

We summarize the major contributions of this paper as
follows:

1) We propose a novel learning paradigm of Grad-
ual Machine Learning (GML), which can effectively
eliminate the requirement for manual labeling effort
for the challenging classification tasks;

2) We present a technical solution based on the pro-
posed paradigm for entity resolution. We present
a package of techniques, including easy instance
labeling, feature extraction and influence modeling,
and gradual inference, to enable effective gradual
machine learning for ER.

3) Our extensive experiments on real data have val-
idated the efficacy of the proposed approach. Our
empirical study has shown that the performance of
the proposed approach is considerably better than
the unsupervised alternatives, and highly compet-
itive compared to the state-of-the-art supervised
techniques. It also scales well with workload size.

Note that a prototype of the proposed GML solution for
ER has been presented in the demo paper of [22]. Besides
providing with more technical details on GML for ER, this
technical paper makes the following new contributions:

1) We propose a scalable approach for gradual infer-
ence. The general approach consists of three steps,
measurement of evidential support, approximate
estimation of inference probability, and construction
of inference subgraph.

2) We present the algorithms for the three steps of
the scalable approach to enable efficient gradual
inference.

3) We evaluate the performance sensitivity of the pro-
posed solution w.r.t various algorithmic parameters
and its scalability. Our experimental results have
shown that the proposed solution performs robustly
w.r.t the parameters and it scales well with work-
load size.

It is also noteworthy that we have recently applied
the GML paradigm on the task of aspect-level sentiment

analysis [47]. Similar to the task of ER, the performance of
GML has been shown to be highly competitive compared to
the state-of-the-art DNN techniques.

The rest of this paper is organized as follows: Section 2
reviews related work. Section 3 defines the task of ER.
Section 4 introduces the GML paradigm. Section 5 proposes
the technical solution for ER. Section 6 presents the solution
of scalable gradual inference for ER. Section 7 presents our
empirical evaluation results. Finally, Section 8 concludes this
paper.

2 RELATED WORK

In this section, we review related work from the orthogonal
perspectives of machine learning and entity resolution.

2.1 Machine Learning Paradigms

Note that many machine learning paradigms have been
proposed for a wide variety of classification tasks. Here,
our intention is not to exhaustively review all the work.
We instead review those closely related to our work and
emphasize their difference from gradual machine learning.

Traditional supervised machine learning algorithms
make predictions on the future data using statistical models
that are trained on previously collected labeled training
data [14]. In many real scenarios, the labeled data may be too
few to build a good classifier. Semi-supervised learning [7],
[24] addresses this problem by making use of a large amount
of unlabeled data and a small amount of labeled data.
Similarly, as an autonomous supervised learning approach,
self-supervised learning [32] usually extracts and uses the
naturally available relevant context and embedded meta
data as supervisory signals. Active learning [3], [4] is an-
other special case of supervised learning in which a learning
algorithm is able to interactively query the user (or some
other information source) to obtain the desired outputs at
new data points. The main advantage of active learning over
traditional supervised learning is that it usually requires
less labeled data for model training. Online learning [26]
and incremental learning [40] have also been proposed for
the scenarios where training data only becomes available
gradually over time or its size is out of system memory limit.
Nevertheless, the efficacy of the aforementioned learning
paradigms depends on the i.i.d assumption. Therefore, they
can not be applied to the scenario of gradual machine
learning.

Curriculum learning (CL) [5] and self-paced learning
(SPL) [28] are to some extent similar to gradual machine
learning in that they were also inspired by the learning prin-
ciple underlying the cognitive process in humans, which
generally starts with learning easier aspects of a task, and
then gradually takes more complex examples into consid-
eration. Both of them essentially investigated how to feed
model training with a sequence of samples ranked by learn-
ing difficulty for improved performance. The difference is
that curriculum learning mainly focused on how to pre-
organize a curriculum (the presenting order of training
examples), while self-paced learning proposed to insert a
regularizer into the training objective function to automati-
cally optimizing the presenting order in the training process.
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However, the models trained by curriculum learning or self-
paced learning are supposed to be applied on a target work-
load satisfying the i.i.d assumption. Therefore, as traditional
supervised learning, their efficacy still depends on good-
quality training examples. More recently, some researchers
proposed the approach of self-paced deep clustering for im-
age classification [10], [21]. Iteratively alternating between
deep representation learning and clustering, it essentially
used self-paced learning to improve deep representation
for better clustering performance. At each iteration, a deep
representation model is first trained in a self-paced manner
based on the clustering results, and the resulting model is
then applied to generate the deep representations for the
instances in a target workload. It can be observed that
similar to traditional self-paced learning, the efficacy of
self-paced representation learning still depends on the i.i.d
assumption. On the other hand, self-paced deep clustering
used the classical clustering algorithms (eg. k-means) to
label the instances based on their learned representations in
a batch manner. Therefore, self-paced deep clustering is at
its core a clustering approach. In contrast, gradual machine
learning gradually reasons about the labels of the hard
instances by factor graph inference without the assumption
of i.i.d. It does not need any clustering algorithm.

In contrast, transfer learning [36], allows the distribu-
tions of the data used in training and testing to be different.
The other learning techniques closely related to transfer
learning include lifelong learning [13] and multi-task learn-
ing [8]. Different from transfer learning, lifelong learning
usually assumes that the current task has good training
data, and aims to further improve the learning using both
the target domain training data and the knowledge gained
in past learning. Multi-task learning instead tries to learn
multiple tasks simultaneously even when they are different.
However, these learning paradigms can not be applied to
the scenario of gradual machine learning either. Firstly,
focusing on unsupervised learning within a task, gradual
machine learning does not enjoy the access to good labeled
training data or a well-trained classifier to kick-start learn-
ing. Secondly, the existing techniques transfer instances or
knowledge between tasks in a batch manner; they do not
support gradual learning by small stages on the instances
with increasing hardness within a task.

2.2 Work on Entity Resolution

Research effort on unsupervised entity resolution were
mainly dedicated to devising various distance functions
to measure pair-wise similarity [33]. However, it has been
empirically shown [6] that the efficacy of these unsupervised
techniques is limited. Alternatively, ER can be automati-
cally performed based on rules [18], [30], [43], probabilistic
theory [19], [44] and machine learning [14], [17], [27], [39].
Compared with the unsupervised alternatives, they can ef-
fectively improve the quality of entity resolution to some ex-
tent. However, good performance of these supervised tech-
niques depends on the presence of effective rules or a large
quantity of accurately labeled training data, which may not
be readily available in real applications. To reduce the cost
of data labeling, many active learning techniques [34], [39]
have been proposed for the task of ER. Active learning

has also been leveraged to ensure a pre-specified precision
requirement for ER [3], [4].

The progressive paradigm for ER [2], [48] has also been
proposed for the scenario in which ER should be processed
efficiently but does not necessarily require to generate high-
quality results. Taking a pay-as-you-go approach, it studied
how to maximize result quality given a pre-specified resolu-
tion budget. However, the target scenario of progressive ER
is different from that of gradual machine learning, whose
major challenge is to label the instances with increasing
hardness without resolution budget.

It has been well recognized that pure machine algo-
rithms may not be able to produce satisfactory results in
practical scenarios [29]. Therefore, many researchers [9],
[16], [20], [34], [45], [46], [49] have studied how to crowd-
source an ER workload. While these researchers addressed
the challenges specific to crowdsourcing, we instead in-
vestigate a different problem in this paper: how to enable
unsupervised gradual machine learning.

3 TASK STATEMENT

ER reasons about the equivalence between two records.
Two records are deemed to be equivalent if and only if
they correspond to the same real-world entity. Given an ER
workload consisting of record pairs, a solution labels each
pair in the workload as matching or unmatching.

TABLE 1
Frequently Used Notations.

Notation Description
D an ER workload consisting of record pairs
Di a subset of D
S a labeling solution for D
d, di a record pair in D
P (di) the estimated equivalence probability of di
f , fi a feature of record pair
F , Fi a feature set
Df the set of record pairs having the feature f

For the sake of presentation simplicity, we summarize
the frequently used notations in Table. 1. As usual, we
measure the quality of a labeling solution by the unified
metric of F-1, which can be represented by

f1(D,S) =
2

1
precision(D,S) + 1

recall(D,S)

. (1)

in which precision(D,S) and recall(D,S) denote the
achieved precision and recall of S on D respectively.

Finally, the task of entity resolution is defined as follows:

Definition 1. [Entity Resolution]. Given a workload consisting
of record pairs, D = {d1, d2, · · · , dn}, the task of entity resolu-
tion is to give a labeling solution S for D such that f1(D,S) is
maximized.

4 LEARNING PARADIGM

The process of gradual machine learning, as shown in
Figure 2, consists of the following three essential steps:

• Easy Instance Labeling. Given a classification task, it
is usually very challenging to accurately label all the
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Fig. 2. Paradigm Overview.

instances in the task without good-coverage training
examples. However, the work can become much eas-
ier if we only need to automatically label some easy
instances in the task. In the case of ER, while the pairs
with the medium similarities are usually challenging
for machine labeling, highly similar (resp. dissimilar)
pairs have fairly high probabilities to be equivalent
(resp. inequivalent). They can therefore be chosen
as easy instances. In real scenarios, easy instance
labeling can be performed based on the simple user-
specified rules or the existing unsupervised learning
techniques. Gradual machine learning begins with
the observations provided by the labels of easy in-
stances. Therefore, the high accuracy of automatic
machine labeling on easy instances is critical for its
ultimate performance on a given task.

• Feature Extraction and Influence Modeling. Fea-
tures serve as the medium to convey the knowledge
obtained from the labeled easy instances to the unla-
beled harder ones. This step extracts the common fea-
tures shared by the labeled and unlabeled instances.
To facilitate effective knowledge conveyance, it is
desirable that a wide variety of features are extracted
to capture as much information as possible. For each
extracted feature, this step also needs to model its
influence over the labels of its relevant instances.

• Gradual Inference. This step gradually labels the
instances with increasing hardness in a task. Since
the scenario of gradual learning does not satisfy
the i.i.d assumption, we propose to fulfill gradual
learning from the perspective of evidential certainty.
As shown in Figure 2, we construct a factor graph,
which consisting of the labeled and unlabeled in-
stances and their common features. Gradual learn-
ing is conducted over the factor graph by iterative
factor graph inference. At each iteration, it chooses
an unlabeled instance for labeling. The iteration is
repeatedly invoked until all the instances in a task are
labeled. Note that in gradual inference, a newly la-
beled instance at the current iteration would serve as
an evidence observation in the following iterations.

Since gradual machine learning is characterized by grad-
ual inference, we formulate the process of gradual infer-

ence. Formally, we denote the model of factor graph corre-
sponding to a classification workload by G. Suppose that
G consists of a set of evidence variables Λ, whose labels
are known, a set of inference variables X, whose labels
are unknown, and a group of factor functions of variables
to indicate the probabilistic relations among the variables,
denoted by Fθ(Di) : Di → Pθ(Di), in which Di denotes a
set of variables and Di ∈ PowerSet(Λ ∪X).

Gradual inference iteratively labels an inference variable
xi ∈ X by factor graph inference until all the inference
variables in G are labeled. In each iteration, GML generally
chooses to label the inference variable with the highest
degree of evidential certainty. Suppose that the total number
of label types, denoted by {L1, L2, . . . , Ll}, is l. Given an
instance d, GML measures its evidential certainty by the
inverse of entropy [42] as follows

E(d) =
1

H(d)
=

1

−
∑

1≤i≤l
Pi(d) · log2Pi(d)

, (2)

in which E(d) and H(d) denote the evidential certainty and
entropy of d respectively, and Pi(d) denotes the inferred
probability of d having the label of Li.

5 SOLUTION FOR ER
5.1 Easy Instance Labeling

Given an ER workload, the solution identifies the easy
instances by the simple rules specified on record similarity.
The set of easy instances labeled as matching is generated
by setting a high lowerbound on record similarity. Similarly,
the set of easy instances labeled as unmatching is generated
by setting a low upperbound on record similarity. To explain
the effectiveness of the rule-based approach, we introduce
the monotonicity assumption of precision, which was first
defined in [3], as follows:

Assumption 1 (Monotonicity of Precision). A value interval
Ii is dominated by another interval Ij , denoted by Ii � Ij , if every
value in Ii is less than every value in Ij . We say that precision
is monotonic with respect to a pair metric if for any two value
intervals Ii � Ij in [0,1], we have P (Ii) ≤ P (Ij), in which
P (Ii) denotes the equivalence precision of the set of instance pairs
whose metric values are located in Ii.

According to the monotonicity assumption, we can sta-
tistically state that a pair with a high (resp. low) similarity
has a correspondingly high probability of being an equiv-
alent (resp. inequivalent) pair. These record pairs can be
deemed to be easy in that they can be automatically labeled
by the machine with high accuracy. In comparison, the
instance pairs having the medium similarities are more chal-
lenging because labeling them either way by the machine
would introduce considerable errors.

We have empirically validated the monotonicity as-
sumption on the real datasets of DBLP-Scholor1 and Abt-
Buy2. The precision levels of different similarity intervals
are shown in Figure 3. It can be observed that statisti-
cally speaking, precision increases with similarity value

1. available at https://dbs.uni-leipzig.de/file/DBLP-Scholar.zip
2. available at https://dbs.uni-leipzig.de/file/Abt-Buy.zip
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Fig. 3. Empirical Validation of the Monotonicity Assumption.

with notably rare exceptions. It is noteworthy that given
a machine metric for a classification task, the monotonicity
assumption of precision actually underlies its effectiveness
as a classification metric. Therefore, the easy instances in
an ER task can be similarly identified by other classification
metrics.

5.2 Feature Extraction and Influence Modeling
The guiding principle of feature extraction is to extract a
wide variety of discriminating features that can capture as
much information as possible from the record pairs. For ER,
we extract the following two types of features from record
pairs:

1) Attribute value similarity. This type of feature mea-
sures a pair’s value similarity at each record at-
tribute. Different attributes may require different
similarity metrics.

2) Token feature. We denote a token by oi, the fea-
ture that oi occurs in both records by Same(oi)
and the feature that oi occurs in one and only
one record by Diff(oi). Note that the feature of
Same(oi) serves as evidence for equivalence, while
Diff(oi) indicates the opposite. Unlike attribute
value similarity, which treats attribute values as
a whole, token feature considers the influence of
each individual token on equivalence probability.
For the workloads with miscellaneous tokens, not
every token is highly discriminating (or indicative
of entity identity); therefore, we filter the tokens by
the metric of IDF (inverse document frequency).

It is worthy to point out that attribute similarity metrics
have been extensively studied in the literature [12]. In GML,
given an attribute type, we simply select the metrics which
have been empirically shown to be effective in indicating
equivalence status. For instance, on DBLP-Scholar, the ap-
propriate metric for the venue attribute is the edit distance,
while the appropriate metric for the title attribute is instead
a hybrid metric combining Jaccard similarity and edit dis-
tance. For the attribute of title, we also use the metric of
longest common substring because it has been widely used
to capture the similarity between two order-sensitive long
token strings. It is noteworthy that given an attribute type,
its similarity metrics can be applied on any pair of particular
values. As a result, the features of similarity metrics are
usually shared by all the pair instances provided that their
corresponding attribute values are not null.

The aforementioned two types of features can provide a
good coverage of the discriminating information contained
in record pairs. We observe that both types of features

can be supposed to satisfy the monotonicity assumption of
precision. Therefore, as shown in Figure 4, for each feature,
we model its influence over pair labels by a monotonous
sigmoid function with two parameters, α and τ , which
denote the x-value of the function’s midpoint and the steep-
ness of the curve respectively. The x-value of the sigmoid
function represents the feature values of pairs, and the y-
value represents their equivalent probabilities as indicated
by the feature. Formally, given a feature f and a pair d, the
influence of f w.r.t d is represented by

Pf (d) =
1

1 + e−τf (xf (d)−αf )
, (3)

in which xf (d) represents d’s feature value w.r.t f . Ac-
cording to Eq. 3, provided with the values of αf and τf ,
the influence model statistically dictates that any feature
value of xf (d) corresponds to an equivalence probability.
Typically, the value of Pf (d) increases with the feature value
of d, or xf (d). As illustrated by the examples shown in
Figure 4, different combinations of αf and τf can result in
different influence model shapes. Note that since the second
type of features has the constant value of 1, we first align
them with record similarity and then model their influence
by sigmoid functions.

feature value

Fig. 4. the Examples of Sigmoid Function.

It is noteworthy that given a sigmoid model, gradual
machine learning essentially reasons about the labels of
the middle points, which correspond to the hard instances,
provided with the labels of the more extreme points at both
sides, which correspond to the easy instances. If it were not
for the monotonicity assumption, estimating the labels of
the middle points by regression would be too erroneous
because the more extreme observations at both sides are
not their valid representatives. Our solution overcomes this
hurdle by assuming monotonicity of precision and pro-
ceeding in small stages, in each of which the regression
results of only a few instances close to the labeled easy
instances are considered for equivalence reasoning. Fortu-
nately, monotonicity of precision is a universal assumption
underlying the effectiveness of the existing machine metrics
for classification tasks. Therefore, our proposed solution for
modeling feature influence can be potentially generalized
for other classification tasks.

5.3 Gradual Inference
To enable gradual machine learning, we construct a factor
graph, G, which consists of the labeled easy instances, the
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unlabeled hard instances and their common features. In G,
the labeled easy instances are represented by the evidence
variables, the unlabeled hard instances by the inference vari-
ables, and the features by the factors. The value of each
variable represents its corresponding pair’s equivalence
probability. An evidence variable has the constant value of 0
or 1, which indicates the status of unmatching and matching
respectively. It participates in gradual inference, but its
value remains unchanged during the inference process.

An example of factor graph is shown in Figure 5. Each
variable has multiple factors, each of which corresponds
to a feature. Since a feature can be shared among multiple
pairs, for presentation simplicity, we represent a feature by
a single factor and connect it to multiple variables. Note that
given a feature f and a pair d, the influence of f w.r.t d is
represented by the sigmoid function of

Pf (d) =
1

1 + e−τf (xf (d)−αf )
, (4)

in which xf (d) represents f ’s value w.r.t d, which is known
beforehand, and τf and αf represent the parameters of a
sigmoid function, which need to be learned. Accordingly, in
the factor graph, we represent the factor weigh of f w.r.t d
by

ωf (d) = θf (d)·log(
Pf (d)

1− Pf (d)
) = θf (d)·τf (xf (d)−αf ), (5)

in which log(·) codes the estimated influence of f on d
by sigmoid regression, and θf (d) represents the confidence
on influence estimation. In practical implementation, we
can estimate θf (d) based on the theory of regression error
bound [11]. More details on the estimation of θf (d) will be
discussed in Subsection 6.1.

Denoting the feature set of a pair d by Fd, a factor graph
infers the equivalence probability of d, P (d), by:

P (d) =

∏
f∈Fd

eωf (d)

1 +
∏
f∈Fd

eωf (d)
. (6)

The process of gradual inference essentially learns the
parameter values (α and τ ) of all the features such that the
inferred results maximally match the evidence observations

on the labeled instances. Formally, the objective function can
be represented by

(α̂, τ̂) = arg min
α,τ
− log

∑
VI

Pα,τ (Λ, VI), (7)

in which Λ denotes the observed labels of evidence
variables, VI denotes the inference variables in G, and
Pα,τ (Λ, VI) denotes the joint probability of the variables in
G. Since the variables in G are conditionally independent,
Pα,τ (Λ, VI) can be represented by:

Pα,τ (Λ, VI) =
∏

d∈Λ∪VI

Pα,τ (d). (8)

Accordingly, the objective function can be simplified into

(α̂, τ̂) = arg min
α,τ
−

∑
d∈Λ

logPα,τ (d). (9)

Considering the unbalanced populations of two classes,
we weight the observations of two classes to perform the
weighted maximum likelihood estimation as in [1], [25]. The
approach essentially weights positive and negative observa-
tions by the inverses of their total occurrences. Specifically,
given a factor graph consisting of n− unmatching and n+

matching observations, we set the weights of the unmatch-
ing and matching observations as 1 and n−

n+
respectively. Ac-

cordingly, the objective function can be finally represented
by

(α̂, τ̂) = arg min
α,τ
−

∑
d∈Λ

td · logPα,τ (d), (10)

in which td = 1 if d is labeled as unmatching, and td = n−
n+

if d is labeled as matching.
Given a factor graph, G, at each stage, gradual inference

first reasons about the parameter values of the features
and the equivalence probabilities of the unlabeled pairs by
maximum likelihood, and then labels the unlabeled pair
with the highest degree of evidential certainty. Note that
GML defines evidential certainty as the inverse of entropy.
Formally, in the case of ER, evidential certainty is measured
by

E(d) =
1

−(P (d) · log2P (d) + (1− P (d)) · log2(1− P (d)))
,

(11)
in which E(d) denotes the evidential certainty of d.

6 SCALABLE GRADUAL INFERENCE

It can be observed that repeated inference by maximum
likelihood estimation over a large-sized factor graph of the
whole variables is usually very time-consuming [51]. As a
result, there is a need for efficient gradual inference that can
scale well with large workloads. In this section, we present a
scalable approach that can effectively fulfill gradual learning
without repeatedly inferring over the entire factor graph.

The scalable solution is crafted based on the following
observations:

• Many unlabeled inference variables in the factor
graph may be only weakly linked through the factors
to the evidence variables. Due to lack of evidential
support, their inferred probabilities would be quite
ambiguous, i.e. close to 0.5. As a result, at each stage,
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Algorithm 1: Scalable Gradual Inference

1 while there exists any unlabeled variable in G do
2 V ′ ← all the unlabeled variables in G;
3 for v ∈ V ′ do
4 Measure the evidential support of v in G;
5 end
6 Select top-m unlabeled variables with the most

evidential support (denoted by Vm) ;
7 for v ∈ Vm do
8 Estimate the probability of v in G by

approximation;
9 end

10 Select top-k certain variables in terms of entropy
in Vm based on the approximate probabilities
(denoted by Vk) ;

11 for v ∈ Vk do
12 Compute the probability of v in G by the

factor graph inference over a subgraph of G;
13 end
14 Label the variable with the minimal entropy in

Vk;
15 end

only the inference variables that have received con-
siderable support from the evidence variables need
to be considered for labeling;

• With regard to the probability inference of a single
variable v in a large factor graph, it can be effectively
approximated by considering the potentially much
smaller subgraph consisting of v and its neighbor-
ing variables. The inference over the subgraph can
usually be much more efficient than over the original
entire graph.

The process of scalable gradual inference is sketched in
Algorithm 1. It first selects the top-m unlabeled variables
with the most evidential support in G as the candidates
for probability inference. To reduce the invocation of maxi-
mum likelihood estimation, it then approximates probability
inference by an efficient algorithm on the m candidates.
Finally, it infers via maximum likelihood the probabilities of
only the top-k most promising unlabeled variables among
the m candidates. For each variable in the final set of k
candidates, its probability is not inferred over the entire
graph of G, but over a potentially much smaller subgraph.
In the rest of this section, we will present the technique for
each of the three steps.

6.1 Measurement of Evidential Support
Since the influence of a feature over the pairs is modeled by
a sigmoid function, we consider the evidential support that
an unlabeled variable receives from a feature as the confi-
dence on the regression result provided by its corresponding
function, denoted by θf (d). Given an unlabeled variable, d,
we first estimate its evidential support provided by each of
its factors based on the theory of regression error bound [11],
and then aggregate them to estimate its overall evidential
support based on the Dempster-Shafer theory [41].

Formally, for the influence estimation of a single feature
f on the variables, the process of parameter optimization

corresponds to a linear regression between the natural log-
arithmic coded influence in Eq. 5, hereinafter denoted by
lf (d), and the feature value xf (d), as follows

lf (d) = τf · xf (d)− τf · αf + ε, (12)

in which ε denotes the regression residual. The parameters
αf and τf are optimized by minimizing the regression
residual as follows:

(α̂f , τ̂f ) = arg min
αf ,τf

∑
d∈Λf

td · (lf (d)− (τf · xf (d)− τf · αf ))
2
,

(13)
in which Λf denotes the set of labeled pairs having the
feature f . As in Eq. 10, td denotes the weights of matching
and unmatching observations.

According to the theory of linear regression error bound,
given a pair d, its prediction error bound δ(lf (d)) and the
confidence level θf (d) satisfy the following formula

δ(lf (d)) =

t(1−θf (d))/2(|Λf | − 2) · σ̂2 ·

√√√√√1 +
1

n
+

(xf (d)− x̄f )2∑
di∈Λf

(xf (di)− x̄f )2
,

(14)

in which t(1−θf (d))/2(|Λf | − 2) represents the Student’s t-
value with |Λf | − 2 degree of freedom at (1 − θf (d))/2
quantile, and

σ̂2 =
1

|Λf | − 2

∑
di∈Λf

(lf (di)− (τ̂f · xf (di)− τ̂f · α̂f ))
2
,

(15)
and

x̄f =
1

|Λf |
∑
di∈Λf

xf (di). (16)

Given an error bound of δ(lf (d)), we measure the evi-
dential support of an unlabeled variable d provided by f
by estimating its corresponding regression confidence level
θf (d) according to Eq. 14. Then, we use the Dempster-Shafer
(D-S) theory [41] to arrive at a degree of belief that takes
into account all the available evidences. Given an unlabeled
variable v, the evidential support provided by a feature
f can be considered to be the extent that f supports the
inference on the value of v: a value of 1 means complete
support while a value of 0 corresponds to the lack of any
support. Suppose that v has l features, {f1,· · · ,fl}, and the
evidential support v receiving from fi is denoted by θi. We
first normalize the values of θi by 1+θi

2 so that they fall into
the range of [0.5, 1]. Then, according to the Dempster’s rule,
the evidential support of v provided by its features can be
represented by

θv =

∏
1≤i≤l

θi∏
1≤i≤l

θi +
∏

1≤i≤l
(1− θi)

. (17)

On time complexity, the total cost of evidential support
measurement can be represented by O(n2 · nf ), in which
n denotes the total number of instances in a task and nf
denotes the total number of extracted features.
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6.2 Approximate Estimation of Inferred Probability
To reduce the prohibitive cost of factor graph inference,
there is a need to efficiently approximate the inferred prob-
abilities of these top-m variables such that only a small
portion (top-k) of them needs to be inferred using factor
graph inference.

As previously mentioned, the feature’s natural logarith-
mic influence w.r.t a pair can be estimated by the linear
regression value based on Eq. 12. Therefore, we approximate
the factor weight of f w.r.t d, ω̂f (d), by

ω̂f (d) = θf (d) · τ̂f (xf (d)− α̂f ), (18)

in which θf (d) represents f ’s normalized confidence level
on the regression result w.r.t d and τ̂f , and α̂f are the re-
gression parameter values estimated by Eq. 13. Accordingly,
a pair’s equivalence probability can be approximated by
leveraging the approximate factor weights of all its features
as follows

P̂ (d) =

∏
f∈Fd

eω̂f (d)

1 +
∏
f∈Fd

eω̂f (d)
, (19)

in which Fd denotes the feature set of d.
In practical implementation, due to high efficiency of

evidential support measurement and inference probability
approximation, the number of candidate inference variables
selected for approximate probability estimation (m) can be
set to a large value provided that the selected variables
receive considerable support. In the case of ER, we set the
threshold of evidential support at 0.9. It means that, we have
the combined confidence level of at least 0.9 that a candidate
variable can be inferred within the specified error bound
based on linear regression by its features. By this threshold,
the value of m should be set to be in the order of thousands
on our test workloads. On the other hand, the proposed
approximation technique can usually provide with an accu-
rate ranking on inference probability. Therefore, considering
inefficiency of factor graph inference, we suggest to set the
number of candidate inference variables chosen for factor
graph inference (k) to a much smaller value, or in the order
of tens. Our empirical evaluation in Section 7 has showed
that to a large extent, the performance of scalable gradual
inference is not sensitive to the parameter settings of m and
k.

On time complexity, the total cost of approximate prob-
ability estimation can be represented by O(n · nf · m), in
which nf denotes the total number of extracted features.

6.3 Construction of Inference Subgraph
Factor inference over a large graph is usually very time-
consuming. Fortunately, as shown in [51], it can be effec-
tively approximated by considering the subgraph consisting
of vi and its neighboring variables. Specifically, consider the
subgraph consisting of vi and its r-hop neighbors. It has
been shown that increasing the diameter of neighborhood
(the value of r) can effectively improve the approximation
accuracy, and with even a small value of r (e.g. 2-3), r-hop
inference can be sufficiently accurate in many real scenarios.

However, in the scenario of gradual inference, some fac-
tors (e.g. attribute value similarity) are usually shared by al-
most all the variables. As a result, r-hop inference may result

in a subgraph covering almost all the variables. Therefore,
we propose to limit the size of inference subgraph in the
following manner: (1) Gradual learning infers the label of a
pair based on its features. Approximate inference only needs
to consider the factors corresponding to the features of vi; (2)
The influence distribution of a factor is estimated based on
its evidence variables. Approximate inference only needs to
consider the evidence variables sharing at least one feature
with the target inference variable; (3) The total number of
evidence variables for any given feature can be limited.
As pointed out in [11], the accuracy of function regression
generally increases with the number of sample observations.
However, the validity of this proposition depends on the
uniform distribution of the samples. The additional samples
very similar to the existing ones can only produce marginal
improvement on prediction accuracy. Therefore, we can
limit the total number of evidence variables for each feature
by dividing the feature value range of [0,1] into multiple
uniform intervals (e.g. 10 intervals, [0,0.1], [0.1,0.2], . . .,
[0.9,1.0]), and then limiting the number of observations for
each interval (e.g. 200).

It is worthy to point out that our proposed approach for
subgraph construction is consistent with the principle of r-
hop approximation in that it essentially opts to include those
factors and variables in the close neighborhood of a target
variable in the subgraph.

7 EMPIRICAL EVALUATION

In this section, we empirically evaluate the performance of
GML on real data. We compare GML with both unsuper-
vised and supervised alternatives, which include

• Unsupervised Clustering (denoted by UC). UC maps
record pairs to points in a multi-dimensional feature
space and then clusters them into distinct classes
based on the distance between them. In our imple-
mentation, we used the classical k-means to classify
pairs into two classes.

• Unsupervised Self-Paced Deep Clustering (denoted
by USPDC). We adapt the unsupervised self-paced
deep clustering approach proposed for image clus-
tering [10], [21] to ER. Unlike UC, in which instance
representation is specified beforehand, USPDC alter-
nates between representation learning and unsuper-
vised clustering. In our implementation, we trained
the similarity vector encoder by DeepMatcher [35],
which is the state-of-the-art DNN classifier proposed
for ER. As in [21], we finetuned a DNN represen-
tation model based on self-paced learning and used
the classical k-means for clustering.

• Unsupervised Rule-based (denoted by UR). UR rea-
sons about pair equivalence based on the rules hand-
crafted by the human. Based on knowledge on test
data, the rules are specified in terms of record sim-
ilarity. For fair comparison, in our implementation,
UR first uses the result of unsupervised clustering
(UC) to estimate the proportions of matching and
unmatching instances in a workload, and then pro-
portionally identify the matching and unmatching
instances by record similarity.
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• Learning based on Support Vector Machine (denoted
by SVM). The SVM-based approach [14] also maps
record pairs to points in a multi-dimensional feature
space. Unlike unsupervised clustering, it fits an opti-
mal SVM classifier on labeled training data and then
uses the trained model to label the pairs in test data.

• Deep Learning (denoted by DNN). The deep learn-
ing approach [35] is the state-of-the-art supervised
learning approach for ER. Representing each record
pair by a vector, it first trains a DNN on labeled
training data, and then uses the trained model to
classify the pairs in test data.

7.1 Experimental Setup

Our evaluation is conducted on three real datasets, which
are described as follows:

• DBLP-Scholar3 (denoted by DS): The DS dataset
contains the publication entities from DBLP and
the publication entities from Google Scholar. The
experiments match the DBLP entries with the Scholar
entries.

• Abt-Buy4 (denoted by AB): The AB dataset contains
the product entities from both Abt.com and Buy.com.
The experiments match the Abt entries with the Buy
entries.

• Songs5 (denoted by SG): The SG dataset contains
song entities, some of which refer to the same songs.
The experiments match the song entries in the same
table.

As in the previous study [35], we use the blocking
technique to filter the instance pairs having a small chance to
be equivalent. GML computes pair similarity by aggregating
the attribute similarities via a weighted sum [15]. For fair
comparison, given a percentage of easy instances (e.g. 30%),
GML first uses the result of unsupervised clustering (UC)
to estimate the proportions of matching and unmatching
instances in a workload, and then proportionally identify
the easy matching and unmatching instances by record
similarity.

We used the platform of PyTorch [37] to implement GML.
In the comparative study, we set the ratio of easy instances
at 30% on all the test workloads. For scalable gradual
inference, we set m = 2000 and k = 10. Our evaluation
results in Subsection. 7.3 will show that GML performs very
robustly w.r.t various parameter settings. Due to space limit,
more details on the experimental setup can be found in our
technical report [23]. Our implementation codes of GML
and the used test datasets have also been made open-source
available at the website6.

7.2 Comparative Study

The detailed evaluation results are presented in Table 2. For
SVM and DNN, we report their performance provided with
different sizes of training data, which is measured by the

3. available at https://dbs.uni-leipzig.de/file/DBLP-Scholar.zip
4. available at https://dbs.uni-leipzig.de/file/Abt-Buy.zip
5. available at http://pages.cs.wisc.edu/˜anhai/data/falcon data/songs
6. https://chenbenben.org/GML/GML-ER.zip

fraction of training data among the whole dataset. In Table 2,
the percentage of training data is listed at the second low in
the table. For instance, for SVM, “30%” means that 30% of
a dataset are used for training; for DNN, “30%(25%:5%)”
means that 25% of a dataset are used for model training, 5%
are used for validation. Since the performance of SVM and
DNN depends on the randomly-selected training data, the
reported results are the averages over ten runs.

It can be observed that GML performs considerably
better than the unsupervised alternatives, UC, USPDC and
UR. In most cases, their performance differences in terms
of F-1 are larger than 5%. Due to the inherent challenge
of ER, the simple UR and UC approaches can not achieve
satisfactory performance. It is worthy to point out that the
more sophisticated USPDC approach fails to outperform the
simpler alternative of UC on the test workloads. On AB,
USPDC even performs considerably worse than UC with the
margin of more than 0.3. Our closer scrutiny has revealed
that even though DeepMatcher provides with a powerful
feature representation capability tailored to ER, the “easy”
training instances selected by k-means may contain too
much label noise. To be more specific, USPDC regards the
instances closest to a cluster center as the “easy” ones, which
are then used for the following iteration of representation
learning. In the scenario of ER, this selection strategy may
result in noisy training examples. To make matters worse,
they may not be able to sufficiently represent the character-
istics of more challenging instances, which are further away
from the cluster centers. As a result, for USPDC, an initial
clustering error can easily snowball after several iterations.
Our experimental results clearly illustrate the limitations of
USPDC. In contrast, GML labels easy instances only once
before gradual inference. Our experimental results have
shown that the strategy of considering a pair instance as
easy based on record similarity is considerably more accu-
rate than distance-based clustering. Furthermore, as shown
in Subsection 7.3, compared with iterative representation
learning based on DNN, gradual inference is more robust
w.r.t the accuracy of easy instance labeling.

We can also observe that the performance of GML in
terms of F-1 is also highly competitive compared to both
supervised approaches of SVM and DNN. GML beats both
supervised approaches of SVM and DNN in most cases if
the percentage of provided training data is no larger than
30%. When the size of training data increases, the perfor-
mance of SVM and DNN generally improves as expected.
Even with the training data size at 30%, GML achieves
roughly the same performance as SVM and DNN on all the
3 datasets. It is worthy to point out that unlike the supervised
SVM and DNN models, GML does not use any labeled training
data. These experimental results evidently demonstrate the efficacy
of GML.

7.3 Sensitivity Evaluation

In the sensitivity evaluation, we vary the ratio of the initial
easy instances, the number of the pair candidates selected
for inference probability approximation (the parameter m
in Algorithm 1), and the number of the pair candidates
selected for factor graph inference (the parameter k in
Algorithm 1). The value of m is set between 500 and 2000,
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TABLE 2
Comparative Evaluation of GML

GML UC USPDC UR

recall precision F1 recall precision F1 recall precision F1 recall precision F1

DS 0.922 0.927 0.924 0.793 0.939 0.860 0.920 0.797 0.854 0.808 0.958 0.877
AB 0.583 0.592 0.587 0.689 0.444 0.540 0.919 0.130 0.228 0.696 0.449 0.546
SG 0.982 0.993 0.987 0.995 0.808 0.892 0.922 0.886 0.904 0.994 0.811 0.893

SVM

10% 20% 30%

recall precision F1 recall precision F1 recall precision F1

DS 0.890 0.918 0.903 0.892 0.918 0.904 0.896 0.921 0.908
AB 0.476 0.677 0.559 0.608 0.524 0.563 0.676 0.483 0.563
SG 0.982 0.992 0.987 0.981 0.993 0.987 0.980 0.995 0.987

DNN

10%(5%:5%) 20%(15%:5%) 30%(25%:5%)

recall precision F1 recall precision F1 recall precision F1

DS 0.949 0.869 0.907 0.945 0.956 0.950 0.982 0.929 0.955
AB 0.043 0.254 0.074 0.441 0.601 0.509 0.444 0.707 0.546
SG 0.777 0.830 0.802 0.952 0.900 0.925 0.938 0.970 0.954

TABLE 3
Sensitivity Evaluation w.r.t Easy Instance Labeling

F-1(Easy Acc(%)) 30% 40% 50% 80% 100%

DS 0.924(99.7) 0.924(99.7) 0.922(99.3) 0.884(92.3) 0.877(89.6)
AB 0.587(96.5) 0.576(95.3) 0.573(94.4) 0.570(92.2) 0.546(90.0)
SG 0.987(99.7) 0.987(99.6) 0.987(99.5) 0.825(97.3) 0.893(96.0)

TABLE 4
Sensitivity Evaluation w.r.t the Parameter m

F-1 m = 500 m = 1000 m = 2000

DS 0.922 0.924 0.924
AB 0.587 0.587 0.587
SG 0.987 0.987 0.987

TABLE 5
Sensitivity Evaluation w.r.t the Parameter k

F-1 k = 1 k = 5 k = 10

DS 0.924 0.924 0.924
AB 0.587 0.588 0.587
SG 0.987 0.987 0.987

and the value of k is set between 1 and 10. While evaluating
the sensitivity of GML w.r.t a specific parameter, we fixed
all the other parameters at the same values. The detailed
evaluation results are reported in Table 3, 4 and 5.

The evaluation results w.r.t the ratio of easy instances
have been shown in Table 3, in which the percentage values
in the parentheses represent the accuracy of easy instance la-
beling. Note that due to the unbalanced numbers of inequiv-
alent and equivalent pairs, the overall high accuracy of easy
instance labeling may not necessarily result in similarly high

F-1 performance. It can be observed that given a reasonable
range on the ratio of easy instances (between 30% and 50%),
the performance of GML is very stable. However, it does not
mean that GML can afford to set the ratio of easy instances at
arbitrarily high. In Table 3, we also report the performance
of GML with the ratio set at 80% and 100%. Note that with
the ratio of 100%, GML is equivalent to UR. We can observe
that in both cases, the performance of GML deteriorates
considerably. In GML, the performance of gradual inference
depends on the label accuracy of evidential easy instances.
If the ratio is set too high, easy instance labeling would
introduce considerable errors and the labeling accuracy of
hard instances would decrease as well.

Similarly, as shown Table 4 and 5, the performance
of GML is highly robust w.r.t the parameters of m and k.
Our experimental results bode well for GML’s applicability
in real applications. It is worthy to point out that even
though setting k to a small number can only marginally
affect the performance of GML, it does not mean that the
factor graph inference is unwanted, can thus be replaced
by the more efficient approximate probability estimation.
On the contrary, we have observed in the experiments
that there actually exist many pair instances whose factor
graph inference results are sufficiently different from their
approximated probabilities such that their labels are flipped
by factor graph inference, especially in the final stages of
gradual inference.

7.4 Scalability Evaluation
In this section, we evaluate the scalability of the proposed
scalable approach for GML. Based on the entities in DBLP
and Scholar, we generate different-sized DS workloads,
from 10000 to 40000. The detailed evaluation results on scal-
ability are presented in Figure 6, in which the x-axis denotes
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Fig. 6. Scalability Evaluation.

workload size and the y-axis denotes the cost multiple with
the runtime spent on the workload of 10k as the baseline.
It can be observed that the total consumed time increases
nearly linearly with workload size. Even though the total
number of features consistently increases with workload
size, the number of features any instance has is quite stable
(in the order of tens). Because the number of evidential
observations for each interval of feature values is limited
by δ, the average cost of the scalable GML spent on each
unlabeled pair only increases marginally as the workload
increases. Therefore, the scalable approach scales well with
workload size.

8 CONCLUSION

In this paper, we have proposed a novel learning paradigm,
called gradual machine learning. We have also developed
an effective solution based on it for entity resolution. Finally,
our empirical study on real data has validated the efficacy
of GML.

Our work on gradual machine learning is an ongoing
effort. Using ER as a test case, we have demonstrated that
gradual machine learning is a promising paradigm. It is very
interesting to develop the solutions based on GML for other
challenging classification tasks besides entity resolution and
sentiment analysis. On the other hand, even though GML
is proposed as an unsupervised learning paradigm in this
paper, human work can be potentially integrated into its
process for improved performance. An interesting challenge
is then how to effectively improve the performance of
gradual machine learning with the minimal effort of human
intervention, which include but are not limited to manually
labeling some instances.

ACKNOWLEDGMENTS

This work was supported by the Fundamental Re-
search Funds for the Central Universities (Program No.
3102019DX1004), National Key Research and Development
Program of China (Program No. 2018YFB1003400), National
Natural Science Foundation of China (Grant No. 61672432,
No. 61732014), Natural Science Basic Research Plan in
Shaanxi Province of China (Program No. 2018JM6086).

REFERENCES

[1] Ejaz S. Ahmed, Andrei I. Volodin, and Abdulkadir. A. Hussein.
Robust weighted likelihood estimation of exponential parameters.
IEEE Transactions on Reliability, 54(3):389–395, 2005.

[2] Yasser Altowim, Dmitri V. Kalashnikov, and Sharad Mehrotra.
Progressive approach to relational entity resolution. Proceedings
of the VLDB Endowment, 7(11):999–1010, 2014.
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