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ABSTRACT

Usually considered as a classification problem, entity resolution
can be very challenging on real data due to the prevalence of dirty
values. The state-of-the-art solutions for ER were built on a variety
of learning models (most notably deep neural networks), which
require lots of accurately labeled training data. Unfortunately, high-
quality labeled data usually require expensive manual work, and
are therefore not readily available in many real scenarios. In this
demo, we propose a novel learning paradigm for ER, called gradual
machine learning, which aims to enable effective machine label-
ing without the requirement for manual labeling effort. It begins
with some easy instances in a task, which can be automatically
labeled by the machine with high accuracy, and then gradually
labels more challenging instances based on iterative factor graph
inference. In gradual machine learning, the hard instances in a
task are gradually labeled in small stages based on the estimated
evidential certainty provided by the labeled easier instances. Our
extensive experiments on real data have shown that the proposed
approach performs considerably better than its unsupervised alter-
natives, and its performance is also highly competitive compared
to the state-of-the-art supervised techniques. Using ER as a test
case, we demonstrate that gradual machine learning is a promising
paradigm potentially applicable to other challenging classification
tasks requiring extensive labeling effort.

Video: https://youtu.be/99bA9aamsgk
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1 INTRODUCTION

The task of entity resolution (ER) aims at finding the records that
refer to the same real-world entity [5]. Consider the example shown
in Figure 1. ER needs to match the paper records between two tables
T1 and T3. The pair of < ry;,72j >, in which ry; and ry; denote a
record in T1 and T respectively, is called a matching pair if and only
if r1; and ry;j refer to the same paper. In the example, r11 and r2; are
matching while r11 and ryp are unmatching. The state-of-the-art so-
lutions for ER were built on a variety of learning models (e.g., deep
neural network [9]), which require lots of accurately labeled train-
ing data. Unfortunately, high-quality labeled data usually require
expensive manual work, are therefore not easily available.
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Figure 1: An ER Example

It can be observed that the dependence of the popular learning
models (e.g., DNN) on high-quality labeled data is not limited to the
task of ER. The dependence is actually crucial for their success in
various domains (e.g., image and speech recognition [13]). However,
in the real scenarios, where high-quality labeled data is scarce, their
efficacy can be severely compromised. To address the limitation
resulting from such dependence, we propose a novel learning par-
adigm for ER, called gradual machine learning, in which gradual
means proceeding in small stages. Inspired by the gradual nature
of human learning, which is adept at solving the problems with
increasing hardness, gradual machine learning begins with some
easy instances in a task, which can be automatically labeled by the
machine with high accuracy, and then gradually reasons about the
labels of the more challenging instances based on the observations
provided by the labeled instances.

We note that there already exist many learning paradigms for
a variety of classification tasks, including transfer learning [10],
lifelong learning [4], curriculum learning [2] and self-training learn-
ing [8] to name a few. Transfer learning focused on using the labeled
training data in a domain to help learning in another target do-
main. Lifelong learning studied how to leverage the knowledge
mined from past tasks for the current task. Curriculum learning
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investigated how to organize a curriculum (the presenting order of
training examples) for better performance. Self-training learning
aimed to improve the performance of a supervised learning algo-
rithm by incorporating unlabeled data into the training data set.
More recently, Snorkel [11] aimed to enable automatic and massive
machine labeling by specifying a wide variety of labeling functions,
whose results are supposed to be fed to DNN models.

However, the following two properties of gradual machine learn-
ing make it fundamentally different from the existing learning
paradigms:

o Distribution misalignment between easy and hard instances
in a task. The scenario of gradual machine learning does
not satisfy the i.i.d (independent and identically distributed)
assumption underlying most machine learning models: the
labeled easy instances are not representative of the unlabeled
hard instances. The distribution misalignment between the
labeled and unlabeled instances renders most existing learn-
ing models unfit for gradual machine learning.

o Gradual learning by small stages in a task. Gradual machine
learning proceeds in small stages. At each stage, it chooses to
only label the instance with the highest degree of evidential
certainty in a task based on the observations provided by
the labeled instances. The process of iterative labeling can
be performed in an unsupervised manner without requiring
any human intervention.

The contributions of this demo can be summarized as follows:
(1) a general paradigm of gradual machine learning (Section 2); (2)
a solution for ER based on the proposed paradigm (Section 3); (3)
an empirical study validating the efficacy of the proposed solution
(Section 4).

2 LEARNING PARADIGM
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Figure 2: Paradigm Overview.

The paradigm of gradual machine learning, as shown in Figure 2,
consists of the following three essential steps:

e Easy Instance Labeling. Given a classification task, it is
usually very challenging to accurately label all the instances
in the task without good-coverage training examples. How-
ever, the work can become much easier if we only need to
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automatically label some easy instances in the task. In the
case of ER, while the pairs with the medium similarities
are usually challenging for machine labeling, highly similar
(resp. dissimilar) pairs have fairly high probabilities to be
equivalent (resp. inequivalent). They can therefore be chosen
as easy instances. In real scenarios, easy instance labeling
can be performed based on the simple user-specified rules
or the existing unsupervised learning techniques. Gradual
machine learning begins with the observations provided by
the labels of easy instances. Therefore, the high accuracy of
automatic machine labeling on easy instances is critical for
its ultimate performance on a given task.
e Feature Extraction and Influence Modeling. Features
serve as the medium to convey the knowledge obtained
from the labeled easy instances to the unlabeled harder ones.
This step extracts the common features shared by the labeled
and unlabeled instances. To facilitate effective knowledge
conveyance, it is desirable that a wide variety of features
are extracted to capture as much information as possible.
For each extracted feature, this step also needs to model its
influence over the labels of its relevant instances.
Gradual Inference. This step gradually labels the instances
with increasing hardness in a task. Since the scenario of
gradual learning does not satisfy the i.i.d assumption, we
propose to fulfill gradual learning from the perspective of
evidential certainty. As shown in Figure 2, we construct a
factor graph, which consisting of the labeled and unlabeled
instances and their common features. Gradual learning is
conducted over the factor graph by iterative factor graph
inference. At each iteration, it chooses the unlabeled instance
with the highest degree of evidential certainty for labeling.
The iteration is repeatedly invoked until all the instances in
a task are labeled. Note that in gradual inference, a newly
labeled instance at the current iteration would serve as an
evidence observation in the following iterations.

3 SOLUTION FOR ER
3.1 Easy Instance Labeling

Given an ER task consisting of record pairs, the solution identifies
the easy instances by the simple rules specified on record similar-
ity. The set of easy instances labeled as matching is generated by
setting a high lowerbound on record similarity. Similarly, the set
of easy instances labeled as unmatching is generated by setting a
low upperbound on record similarity. The effectiveness of the rule-
based approach can be explained by the monotonicity assumption
of precision [1]. With the metric of pair similarity, the underlying
intuition of monotonicity assumption is that the more similar two
records are, the more likely they refer to the same real-world entity.
According to the monotonicity assumption, we can statistically
state that a pair with a high (resp. low) similarity has a correspond-
ingly high probability of being an equivalent (resp. inequivalent)
pair. These record pairs can be deemed to be easy in that they can
be automatically labeled by the machine with high accuracy. In
comparison, the instance pairs having the medium similarities are
more challenging because labeling them either way by the machine
would introduce considerable errors.



3.2 Feature Extraction and Influence Modeling

Given an ER workload, we extract three types of features from its
pairs, which include:

(1) Attribute value similarity. Different attributes may require
different similarity metrics.

(2) Similarity based on the maximal number of common con-
secutive tokens in string attributes. Consecutive tokens can
usually provide additional information besides that implied
by the attribute value similarity features.

(3) The tokens occurring in both records or in one and only one
record. Representing a token by o;, we denote the feature of
0; occurring in both records by Same(o; ), and the feature of
0; occurring in one and only one record by Diff{o; ). Unlike
the previous two types of features, which treat an attribute
value as a whole, this type of feature considers the influence
of each individual token on pair equivalence probability.

These three types of features can provide good coverage of the

information contained in record pairs. We observe that all the three
types of features can be supposed to satisfy the monotonicity as-
sumption of precision. Therefore, for each feature f, we model its
influence over pair labels by a monotonous sigmoid function with
two parameters, af and 7y as shown in Figure 2, which denote the
x-value of the function’s midpoint and the steepness of the curve
respectively. Formally, given a feature f and a pair d, the influence
of f w.rtd is represented by

1

Frld) = o o @-ap)’ )
in which x7(d) represents f’s value w.r.t d. Since the third type of
features has the constant value of 1, we first align them with record
similarity and then model their influence by sigmoid functions. It
is worthy to point out that monotonicity of precision is a universal
assumption underlying the effectiveness of the existing machine
metrics for classification tasks. Our proposed solution for feature
influence modeling can, therefore, be potentially generalized for
other classification tasks.

3.3 Gradual Inference
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Figure 3: An Example of Factor Graph.
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To enable gradual machine learning, we construct a factor graph,
G, which consists of the labeled easy instances, the unlabeled hard
instances and their common features. Gradual machine learning is
attained by iterative factor graph inference on G. In G, the labeled
easy instances are represented by the evidence variables, the unla-
beled hard instances by the inference variables, and the features by
the factors. The value of each variable represents its corresponding
pair’s equivalence probability. An evidence variable has the con-
stant value of 0 or 1, which indicate the status of unmatching and
matching respectively. It participates in gradual inference, but its
value remains unchanged during the inference process. The values
of the inference variables should instead be inferred based on G.
An example of factor graph inference has been shown in Figure 3.

Note that the influence of a feature over a pair is specified by the
sigmoid function as shown in Eq. 1. Therefore, in the factor graph,
we represent the factor weigh of f w.r.t d by

(d) = 0¢(d) - log( @ ) = 0p(d) - 7p(xp(d) —ap),  (2)

wpld) =of 08 1-Pr(d) =vf Tr\xf af),
in which log(-) codes the estimated influence of f on d by sigmoid
regression, and 0f(d) represents the confidence on influence es-
timation. We consider 0y (d) as the confidence on the regression
result provided by its corresponding sigmoid function, and estimate
it based on the theory of regression error bound [3].

A factor graph infers the equivalence probability of a pair d, P(d),
by:
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in which F; denotes the feature set of the pair d. The process of
gradual inference essentially learns the parameter values (« and 7)
of all the features such that the inferred results maximally match
the evidence observations on the labeled instances. Formally, the
objective function can be represented by

(&%) = argminlog ; Pe, (A V]), (@)
I

P(d) = (3)

in which A denotes the observed labels of evidence variables, Vi
denotes the inference variables in G, and Py, - (A, Vr) denotes the
joint probability of the variables in G. Since the variables in G are
conditionally independent, Py, 7 (A, Vr) can therefore be represented
by:

Por(AVD = [] Par@. 5)

deAUVy

Accordingly, the objective function can be simplified into

(@,7) = argmin—lo Py, (d). (6)
gmun g ng;\

Given a factor graph, G, at each stage, gradual inference first
reasons about the parameter values of the features and the equiva-
lence probabilities of the unlabeled pairs by maximum likelihood,
and then labels the unlabeled pair with the highest degree of evi-
dential certainty. We define evidential certainty as the inverse of
entropy [12], which is formally defined by

H(d) = =(P(d) - log,P(d) + (1 = P(d)) - logy(1 = P(d))),  (7)



in which H(d) denotes the entropy of d. An inference variable
once labeled would become an evidence variable and serve as an
evidence observation in the following iterations. The iteration is
repeatedly invoked until all the inference variables are labeled. In
our programs, we deploy SciPy [7] to implement the process of
factor graph inference.

However, repeated inference by maximum likelihood estimation
over a large-sized factor graph of the whole variables is usually
very time-consuming [14]. It is also unnecessary because at each
iteration, only the inference variables receiving considerable ev-
idential support from evidence variables need to be considered
for labeling. Therefore, we have proposed a scalable solution for
gradual inference. It first selects the top-m unlabeled variables with
the most evidential support in G as the candidates for labeling. To
reduce the invocation frequency of factor graph inference, it then
approximates probability estimation on the m candidates by a more
efficient algorithm. Finally, it infers via maximum likelihood the
probabilities of only the top-k most promising variables among the
m candidates. For each variable in the final set of k candidates, its
probability is not inferred over the entire graph of G, but over a
potentially much smaller subgraph. More technical details of scal-
able gradual inference can be found in our technical report [6], but
omitted here due to space limit.

4 EMPIRICAL EVALUATION & DEMO PLAN

In this section, we empirically evaluate the performance of our
proposed approach (denoted by GML) on real data. We have em-
pirically compared the proposed solution with four alternatives,
including unsupervised rule-based (UR), unsupervised clustering
(UC), support vector machine (SVM) and deep neural network
(DNN) [9]. Our evaluation was conducted on 3 real datasets, DBLP-
Scholar!(denoted by DS), Abt-Buy? (denoted by AB) and Songs®
(denoted by SG).

The detailed evaluation results are presented in Table 1, in which
r and p stand for recall and precision respectively, and the results
on F-1 have been highlighted. For the supervised approaches of
SVM and DNN, we report their performance provided with differ-
ent sizes of training data, which are measured by the fraction of
training data among the whole workload. For DNN, the training
data consists of the data used for model training and the data used
for validation. Therefore, we report the fractions of both parts in
the table. It can be observed that GML performs considerably better
than the unsupervised alternatives, UR and UC. In most cases, their
performance differences on F-1 are larger than 5%. The performance
of GML in terms of F-1 is also highly competitive compared to both
supervised approaches of SVM and DNN. GML beats SVM (with the
maximum training data size at 30%) on all the three test datasets;
GML also beats DNN (with the maximum training data size at 30%)
on both AB and SG.
Demo Plan. We have implemented a demo system for gradual ma-
chine learning, whose screenshots are shown in Fig. 4. It consists
of four components: Easy Instance Labeling (EIL), Feature Extrac-
tion(FE), Gradual Inference (GI) and finally Result Report (RR). EIL

!available at https://dbs.uni-leipzig.de/file/DBLP-Scholar.zip
Zavailable at https://dbs.uni-leipzig.de/file/ Abt-Buy.zip
3available at http://pages.cs.wisc.edu/ anhai/data/falcon_data/songs

3529

Table 1: Comparative Evaluation of GML

| GML | UR | uc
‘ r p F-1 ‘ r p F-1 ‘ r p F-1

DS | 0.885 0.944 0.914 | 0.923 0.840 0.880 | 0.793 0.939 0.860
AB | 0461 0.790 0.582 | 0.645 0.428 0.514 | 0.806 0.268 0.402
SG | 0.979 0.962 0.970 | 0.993 0.825 0.901 | 0.995 0.808 0.892

SVM

|
| 10% | 20% | 30%
‘ r p F-1 ‘ r P F-1 ‘ r p F-1

DS | 0.890 0.918 0.903 | 0.892 0.918 0.904 | 0.896 0.921 0.908
AB | 0.667 0.387 0.490 | 0.674 0.404 0.505 | 0.535 0.525 0.530
SG | 0.995 0.855 0.920 | 0.992 0.925 0.957 | 0.991 0.945 0.968

DNN

20%(15%:5%) | 30%(25%:5%)

|
| 10%(5%:5%) |
|

r P F-1 ‘ r P F-1 ‘ r p F-1

DS | 0.949 0.869 0.907 | 0.945 0.956 0.950 | 0.982 0.929 0.955
AB | 0.043 0.254 0.074 | 0.441 0.601 0.509 | 0.444 0.707 0.546
SG | 0.777 0.830 0.802 | 0.952 0.900 0.925 | 0.938 0.970 0.954

Configure Setting
@ Datasat File

Load Rule

Song Dataset

[ b ¥ =

Figure 4: Demo System Screenshots

labels easy instances. FE extracts features, models the influence
of features and constructs factor graph. GI demonstrates the pro-
cess of scalable gradual inference, which includes top-m candidate
selection based on evidential support measurement, efficient en-
tropy estimation and approximate factor graph inference. In GI, we
have also designed an animation to visualize the iterative labeling
process of GML. Finally, RR reports the experimental results. The
attendees will be invited to operate the demo system step by step
on a laptop using various datasets. They will be able to look into
the details of the visualized process of GML.
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