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ABSTRACT

While the state-of-the-art performance on entity resolution (ER) has been achieved by deep learning,
its effectiveness depends on large quantities of accurately labeled training data. To alleviate the data
labeling burden, Active Learning (AL) presents itself as a feasible solution that focuses on data deemed
useful for model training.

Building upon the recent advances in risk analysis for ER, which can provide a more refined esti-
mate on label misprediction risk than the simpler classifier outputs, we propose a novel AL approach
of risk sampling for ER. Risk sampling leverages misprediction risk estimation for active instance
selection. Based on the core-set characterization for AL, we theoretically derive an optimization
model which aims to minimize core-set loss with non-uniform Lipschitz continuity. Since the defined
weighted K-medoids problem is NP-hard, we then present an efficient heuristic algorithm. Finally,
we empirically verify the efficacy of the proposed approach on real data by a comparative study. Our
extensive experiments have shown that it outperforms the existing alternatives by considerable mar-

gins.

1. Introduction

The purpose of entity resolution (ER) is to identify the
equivalent records that refer to the same real-world entity.
Considering the running example shown in Fig. 1, ER needs
to match the paper records between two tables, R; and R,.
A pair (ry;, rp;), in which ry; and r,; denote a record in R;
and R, respectively, is called an equivalent pair if and only
if r1; and ry; refer to the same paper; otherwise, it is called
an inequivalent pair. In this example, r|; and ry; are equiva-
lent while rq; and r,, are inequivalent. ER can be treated as
a binary classification problem tasked with labeling record
pairs as equivalent or inequivalent. Therefore, various learn-
ing models have been proposed for ER [9]. As many other
classification tasks (e.g. image and speech recognition), the
state-of-the-art performance on ER has been achieved by
deep learning [35, 14, 36, 16, 54, 31].

Unfortunately, the efficacy of Deep Neural Network
(DNN) models depends on large quantities of accurately la-
beled training data, which may not be readily available in
practical scenarios. One possible way to overcome this is-
sue is by active learning, in which data are actively sam-
pled to be labeled by human oracles with the goal of maxi-
mizing model performance while minimizing labeling costs.
Various sampling strategies have been proposed for active
learning over the years coming from different perspectives,
e.g. uncertainty [29], representativeness [40] and expected
model change [23]. There have also been different combina-
tions of Uncertainty with Representativeness [50, 15] or with
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Expected Model Change [53] in an attempt to get the best of
both worlds. In the traditional setting, AL algorithms typi-
cally choose a single point at each iteration; however, this is
not feasible for DNN models since 1) a single point is likely
to have no statistically significant impact on the accuracy due
to the locality of optimization methods, and 2) each iteration
requires a full training until convergence which makes it in-
tractable to query labels one-by-one. Hence, most proposed
AL algorithms for DNNs [50, 40, 4, 46, 26, 1], take the strat-
egy of batch selection that queries labels for a large subset at
each iteration.

Uncertainty, considered the cheapest to obtain, is the
mostly used sampling strategy due to its robustness across
architectures and domains [51]. Empirical studies [18] have
also revealed that it is usually highly competitive with the ex-
isting but more complicated alternatives. We note that risk
analysis for ER has been recently studied [7, 20, 8] with the
latter representing the most recent interpretable and learn-
able solution, henceforth denoted LearnRisk. Risk analysis
estimates the misprediction risk of a classifier when applied
to a certain workload. It has been empirically shown [8] that
LearnRisk can identify mislabeled instances with consider-
ably higher accuracy than the existing uncertainty measures,
which are directly estimated upon classifier outputs. Tradi-
tionally, the motivation behind using uncertainty sampling in
AL is to make the model more familiar with examples that
come from uncertain areas. Risk analysis goes a step further
by detecting mispredictions on unseen data regardless of the
classifier’s self-reported uncertainty. This enables access to
more informative examples that could have a positive impact
on classifier training. Hence, risk analysis is naturally fit as
an AL sampling strategy.

Therefore, in this paper, we propose a novel AL approach
of risk sampling for ER. Fig. 2 illustrates the risk sampling
framework, which leverages the results of risk analysis in the
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Figure 1: An Entity Resolution running example.
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Figure 2: The Framework of Risk Sampling for Active Learn-
ing.

sampling step of active learning. Based on the existing core-
set characterization [40] for AL, we theoretically derive an
optimization model which aims to minimize the core-set loss
with non-uniform Lipschitz continuity. Since the defined
weighted K-medoids problem is NP-hard, we then present an
efficient heuristic algorithm. It is noteworthy that the strat-
egy of risk sampling tends to sample challenging examples
for the classifier, and spur it into learning better representa-
tions by looking farther than the low confidence regions in
the current representation space. The main contributions of
this paper can be summarized as follows:

e We propose a novel approach of risk sampling for ER
active learning.

e We define a theoretically sound optimization model
for risk sampling, and due to its NP-hardness, present
an efficient weighted K-medoids algorithm.

e We validate the efficacy of the proposed solution on
real datasets. Our extensive experiments have shown
that it can effectively accelerate classifier training
compared with the existing alternatives. Furthermore,
its performance is very robust w.r.t the size of valida-
tion data.

2. Related Work

We review related work from the orthogonal perspec-
tives of entity resolution and active learning.
Entity Resolution. Also known as Entity Matching or
Record Linkage, ER plays a key role in data integration and

has been extensively studied in the literature [10, 11]. Other
than the rule-based and probabilistic solutions [30, 42, 43],
several machine learning models have been proposed, in-
cluding Support Vector Machines [9], end-to-end deep neu-
ral network architectures [35, 14, 36, 16], and pretrained
models [54, 31].

ER remains very challenging in real scenarios due to
the prevalence of dirty data. Therefore, there is a need for
risk analysis, alternatively called trust scoring or confidence
ranking in the literature. It encompasses a multitude of
methods that all intend to detect situations where a deployed
DNN model is prone to misprediction. The proposed solu-
tions range from those simply based on the model’s output
probabilities to more sophisticated, interpretable, and learn-
able ones [19, 25, 12, 52, 8]. Among them, LearnRisk [8]
is an interpretable and learnable framework for ER that is
able to construct a dynamic risk model tuned towards a spe-
cific workload. It measures the risk using the VaR (Value-
at-Risk) [45] metric from financial investment modeling. It
is noteworthy that the concept of risk has also been lever-
aged in other works for different purposes as demonstrated
in [49, 48, 2]. For instance, in [49] , RecRisk considers two
risk facets, Sense Drop and Blue Joy, which affect recom-
mendation quality from the user perspective, and presents
an approach to minimize the value of risk facets in person-
alized recommendations.

Active Learning. Active learning has been extensively re-
searched in the context of machine learning. The most
prominent approaches that proved to perform well include
margin-based, maximum entropy, Query by committee and
Expected variance reduction to name a few [41] . How-
ever, many of the above methods pose challenges when ap-
plied to deep neural networks. The margin-based approaches
are hindered by the fact that neural networks have an in-
tractable decision boundary. Query by committee requires
maintaining multiple classifiers and retraining them in each
iteration which is not very practical. Similarly, the variance
reduction methods require classifier retraining for each un-
labeled point; this process is prohibitive even for shallow
models. Active learning for ER has also received great at-
tention [38, 24, 32, 37, 5]. In the low-resource setting, ER
was also tackled using deep transfer active learning [26].
The proposed sampling method relies on Entropy to select a
batch combined of uncertain and high-confidence pairs rep-
resenting both class labels. The automatically labeled high-
confidence pairs are added to prevent overfitting to uncertain
examples.

More recently, active learning for DNNs has also been
studied, mostly focusing on image classification. It has been
shown in [17, 28] that applying dropout at test time can
approximate Bayesian inference enabling the application of
Bayesian methods to deep learning. It has also been shown
in [3] that ensemble-based uncertainty performs better and
is more calibrated than a single model or dropout-based un-
certainty. The framework proposed in [47] automatically se-
lected and pseudo-annotated unlabeled samples in addition
to uncertain samples. The work in [13] approximated the
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distance to decision boundary by the distance to the nearest
adversarial example. The works in [23] and [53] used an ex-
pected model change measure which chooses examples that
maximize the impact on the learned model weights when la-
beled. Other recent works include generative data augmen-
tation for AL [46], adversarial network-based discrimination
of informative points [44] and detrimental point processes-
based batch selection [4] to name a few. There also exist pro-
posals combining uncertainty with representativeness using
data representation and entropy such as [50, 15], or relying
on gradient-based representation and gradient amplitude as a
proxy to uncertainty [1]. Itis worthy to point out that the pro-
posed approach of risk sampling can be easily generalized to
image classification when provided with effective risk anal-
ysis techniques.

3. Preliminaries

In this section, we formally state the AL task, and then
introduce the risk analysis technique for ER, LearnRisk.

3.1. Task statement

Suppose that we have a set of record pairs D = {d;, y;},
where a pair d; can be labeled as equivalent (y; = 1) or in-
equivalent (y; = 0). We follow the standard pool-based set-
ting in which the set of training data, D, is partitioned into a
small initial labeled set L = {d, y; } and an unlabeled set U
We also assume the existence of two other sets: a validation
set V' that is commonly used for hyperparameter tuning as
well as early stopping for DNN classifiers, and an indepen-
dent test set 7" used to evaluate the classifier’s generalization
performance on unseen data.

The task of ER active learning is formally defined as fol-
lows:

Definition 1. Provided with the test and validation sets T'
and V, the labeled set L and the unlabeled set (the pool) U,
active learning iteratively selects a batch of data O C U that
minimizes a specified criterion given a classifier 4 trained
on L. At each iteration, once Q is labeled, it is removed
from U and added to the labeled set L, i.e. U « U \ Q,
L « L U Q; finally, a classifier is retrained on the updated
set L.

3.2. Risk Analysis for ER: LearnRisk

Originally proposed in [8], the risk analysis pipeline op-
erates in three main steps: Risk feature generation followed
by Risk model construction and finally Risk model training.

3.2.1. Risk feature generation

This step automatically generates risk features in the
form of interpretable rules based on one-sided decision trees.
The algorithm ensures that the resulting rule-set is both dis-
criminative, i.e, each rule is highly indicative of one class
label over the other; and has a high data coverage, i.e, its
validity spans over a subpopulation of the workload. As op-
posed to classical settings where a rule is used to label pairs

to be equivalent or inequivalent, a risk feature focuses exclu-
sively on one single class. Consequently, risk features act as
indicators of the cases where a classifier’s prediction goes
against the knowledge embedded in them. An example of
such rules is:

ri[Year] # rj [Year] — inequiualent(ri,rj),

where r; denotes a record and r;[Y ear] denotes r;’s Y ear at-
tribute value. With this knowledge, a pair predicted as equiv-
alent whose two records have different publication years is
assumed to have a high risk of being mislabeled.

3.2.2. Risk model construction

Once high-quality features have been generated, the lat-
ter are readily available for the risk model to make use of, al-
lowing it to be able to judge a classifier’s outputs backing up
its decisions with human-friendly explanations. To achieve
this goal, LearnRisk, drawing inspiration from investment
theory, models each pair’s equivalence probability distribu-
tion (portfolio reward) as the aggregation of the distributions
of its compositional features (stock rewards).

Practically, the equivalence probability of a pair d; is
modeled by a random variable p; that follows a normal dis-
tribution N’ (yi,al.z), where y; and 6i2 denote its expecta-
tion and variance respectively. Given a set of m risk fea-
tures fi, fo, ..., [y let W = [w{, w,,...,w,,] denote their
corresponding weight vector. Suppose that yp = [u 10 Mgy
2 2

fl ’ fm
responding expectation and variance vectors respectively,

such that N (u ;e o-jz,.) denotes the equivalence probability
J

T 2 _ 2 T : _
"’”fm] ando-F—[a Opseees© ]" represent their cor

distribution of the feature f;. Accordingly, d;’s distribution
parameters are estimated by:

p; =b(Wopr); o7 = b,(Woo})
Where o represents the element-wise product and b; is a one-
hot feature vector.

Besides one-sided decision rules, LearnRisk also incor-
porates classifier’s output probability as one of the risk fea-
tures. Provided with the equivalence distribution p; for d, its
risk is estimated by the metric of Value-at-Risk (VaR) [45].
Note that compared with previous simpler alternatives using
a single value to represent equivalence probability, Learn-
Risk can more accurately capture the uncertainty of the label
status by a distribution.

3.2.3. Risk model training

Finally, the risk model is trained on a classifier’s vali-
dation data to optimize a learn-to-rank objective [6] by tun-
ing the risk feature weight parameters (w;) as well as their
variances (01,2). As for their expectations (y;), they are con-
sidered as prior knowledge, and are estimated from labeled
training data. Once trained, the risk model can be used to as-
sess the misclassification risk on an unseen workload labeled
by the classifier.
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Table 1
Notation.
Symbol  Description
d, a pair of left and right records (r,7;)
y; pair's label
ny number of attributes per record
T, total number of tokens in pair d;
a; (a; k-th attribute of the left (resp. right) record
wk t-th token for attribute a,
T, number of tokens in attribute a,
m word embedding dimension

X, € R7%*™ pair d,'s matrix representation
X* e RT™ representation of a,
XFeR™ rth token's vector representation in attribute a,

4. Risk Sampling

In AL, each individual iteration can be seen as a stan-
dard supervised learning procedure in which a model is fit
to labeled data, then the best configuration is selected based
on the performance on a disjoint validation set. As shown in
Fig. 2, the incorporation of risk analysis as an extra step into
the process is therefore fairly straightforward. In this section,
we illustrate the approach of risk sampling on the classical
DeepMatcher model [35] for ER, which was built upon re-
current neural networks (RNN). The proposed approach is
however similarly applicable to other DNN solutions, pro-
vided they can be shown to be Lipschitz-continuous.

In the rest of this section, we first theoretically derive the
optimization model for risk sampling based on the core-set
characterization, and then due to its NP-hardness, present a
heuristic algorithm for its efficient solution. The notation
used throughout this section as well as in Appendix is given
in Table 1.

4.1. Optimization Model: Theoretical Derivation

Suppose that the ER workload, D, is drawn from a dis-
tribution p,. Based on the core-set characterization for AL
presented in [40], we consider the upper-bound of active
learning loss in batch setting defined as

|Ed,y~pz [l(d’ y)]l

< |Egpep i@l == 3 i,y

(d;,y;)eD
1
+ 00 Y ;)
(djsyj)eQ
1 1
o X M- X )|
d;.y)ED (djan)eQ

in which the loss is controlled by the training error of the
model on the labeled subset, the generalization error over
the full dataset and a term referred to as the core-set loss.
Core-set loss is simply the difference between average em-
pirical loss over the set of points which have labels and the
average empirical loss over the entire dataset including un-
labeled points. Empirically, it is widely observed that DNNs

are highly expressive leading to very low training error and
they typically generalize well for various classification prob-
lems. Hence, the critical part for active learning is the core-
set loss. Following this observation, we start off with the
core-set loss defined as

1
2 =g X

(d;.y;)ED (djyyj')eLUQ

S |

Id;,yp| (1)

Where / is the loss of the model trained on L U O (A 0)-
Informally, given an initial labeled set (L) and a budget (b),
we are trying to find a set of points to query (Q), such that the
learned model’s performance on the labeled subset (L U Q)
and that on the whole dataset (D) will be as close as possible.
In [40], it has been shown that provided with a A-Lipschitz
continuous convolutional neural network, if a set of balls,
denoted by s, with radius &, centered at each member of s
can cover the entire set D, the core-set loss can be bound
with the covering radius ¢, and a term that goes to zero with
rate depending only on n.

The existing core-set characterization applies the global
Lipschitz value for all unlabeled points. However, it can be
observed that, provided a Lipschitz continuous DNN, the lo-
cal Lipschitz continuities of unlabeled points are usually not
uniform, or their local Lipschitz values may be vastly dif-
ferent. Since the DeepMatcher model was built upon RNN,
in what follows, we first theoretically establish the Lipschitz
continuity of RNN and the DNN model of DeepMatcher, and
then derive the optimization model for risk sampling based
on non-uniform Lipschitz continuity.

Lipschitz Continuity of RNN. For a generic RNN, we have
Lemma 1 on its Lipschitz continuity. We have provided the
proofs of the lemmas and theorems in the appendix.

Lemma 1. The loss function defined as the 2-norm be-
tween one-hot class labels and the Softmax outputs of a
stable RNN with T time steps and input dimension m, fol-
lowed by ny. fully connected layers defined over C classes

. J(C=DT L
is % a1t Lipschitz.

Note that a in Lemma 1 is a bound over the operator
norms of all trainable matrices in the RNN and fully con-
nected layers. Although « is in general unbounded, it can be
made arbitrarily small without changing the loss function’s
behavior. Moreover, an RNN is said to be stable when the
gradients cannot explode, which is only valid when a < 1
[34]. In order to extend the result in Lemma 1 to the Deep-
Matcher solution for ER, we define a corresponding neural
network model, then show that it is Lipschitz continuous in
Theorem 1.

Definition 2. DNN Model for ER. Suppose that each pair,
denoted by d; = (r;,7;), in an ER workload, consists of n 4
attributes per record r;, where each attribute g, is a sequence
of T}, tokens wf The model first embeds each attribute a; as
a sequence of vectors using an embedding matrix E (X tk =
E [wf]). Then, each attribute is encoded by a stable RNN
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into a representation s, € R™ as
s, = RN N(X¥).

Let the attribute similarity layer be defined by a distance
function Fp, : R™ X R™— R™. The k-th attribute pair simi-
larity s}, between g, and @ is then defined as

S‘I( = FD(‘S—k_’ S—k.)

Finally, the classification layer F is defined by a fully-
connected neural network followed by a Softmax function.
The model takes the aggregated pair similarities as input and
returns the match probability p by

p=Fe({$1 - 8, )

The model defined in Definition 2 is consistent with
the network structure defined in the RNN variant of Deep-
Matcher [35]. On its Lipschitz continuity, we have Theo-
rem 1.

Theorem 1. The loss function defined as the 2-norm be-
tween one-hot class labels and the Softmax outputs of an
RNN-based ER model as defined in Definition 2 with input
representation dimension m and maximal number of tokens

~ ngetl =
per pair T is & fz VT m-Lipschitz.

Optimization Model. Based on the Lipschitz continuity of
the DNN model for ER, we establish an upper-bound on the
core-set loss of active learning in Theorem 2.

Theorem 2. Given a dataset D of size n containing a labeled
subset L and a Lipschitz continuous classifier, the core-set
loss of active learning satisfies the following upper-bound:

1
Z’%mWw@ D

(d;.y,)€D (d;.y,)ELUQ

<P Y L, - Xl @

n
(dj,J’j)GLUQ (di,yi)GCj

l(dj"yj)

S | =

inwhich L; represents its Lipschitz constant for the loss of the
model trained on LUQ, C; is D’s j-th cluster with (d;, y;) €
L U Q representing its center and ||.||, is the Ly norm.

According to Theorem 2, we define the optimization ob-
jective for AL as:

min Z 2 Lill Xy — de||2~ (©)

@ (4,5)ELU0 (W, e,

Unfortunately, in Eq. 3, L; is not available prior to the se-
lection of O and the training of A, ,,. However, it can be
observed that given an unlabeled point, its Lipschitz value is
closely correlated with its misprediction risk. Indeed, if we
consider an unlabeled point d;’s misprediction risk Ry (d;)
as its expected loss, i.e. Ry (d;) = E[I(d;, y;)], its Lipschitz
value can be empirically estimated by

L = Ry (d))
' min(dj,yj)eL ”Xd,- - de||2’

“

Algorithm 1: Weighted fastPAM

Input: D Full data
L . Initial labeled data
b>0 : Query budget

Output: Query Q.
1: Let Q « top b points ranked by L;

2: Calculate the total deviation 7' D for the initial solution

LUQbyEq.6
3: repeat
4 forallx; € D\(LUQ)do
5: dj - |]-j ' dnearest(xj)
6: ATD < (0,..,0,—d,, ..., —d;)
7 for all x, # x; do
8 dy; < d(x,,x;)
9 if n € O then
10: Update AT D,
11: ifd,; <d, then
12: Update AT D; form; € O\ {m,}
13: Save best swap (AT D*, m*, x*)
14:  if AT D* < 0 then
15: Swap(m*,x™)
16: TD « TD+ AT D*

17: until ATD* >0

in which d; and d; denote an unlabeled point and a labeled
point, respectively. R;(d;) denotes the misprediction risk
of d;. This follows straightforwardly from the Lipschitz
constant definition for the DNN loss function (|/(d;, y;) —
Id;,ypl <L| |Xdi - Xd/_ [15). Since the loss of the labeled
pair is assumed to be zero, the loss of the unlabeled pair is
estimated via its misprediction risk Ry (d;). Therefore, we
approximate L; with its empirical estimation based on the
latest classifier, which is conveniently available as shown in
Eq. 4. The optimization objective of risk sampling is finally
defined as

. !’
min 3 D LIIXg = X Il (5)
(d;,y))ELUQ (d;.y)EC;

4.2. Algorithm

Clearly, the optimization problem defined in Eq. 5 is a
sample-weighted version of the classical k-medoids clus-
tering problem [27] with the addition of the weight L, for
each non-medoid x;. Given a specified number of clusters
k, k-medoids aims at finding k clusters where each clus-
ter is centered around a point in the data. Due to its NP-
hardness [33], the classic way to solve the k-medoids prob-
lem is via the heuristic Partitioning Around Medoids (PAM)
algorithm [27], or its more recent optimized version, namely,
fastPAM [39]. Hence, we adapt the fastPAM algorithm to
risk sampling.

In the scenario of risk sampling, the number of clusters
is the size of the labeled data in addition to the data to be
queried, i.e. k = |L U Q|. The fotal deviation (TD) ob-
jective to be minimized as shown in Eq. 5 is measured by
the sum of dissimilarities of each point to the medoid of its
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cluster weighted by its corresponding sample-weight with
Euclidean distance as its dissimilarity measure, i.e.

TD= >, LlIXg = Xyl (6)
(d;.y;)ELUQ (d;.y,)EC;

For risk sampling, we need to only optimize Q while keep-
ing L fixed. As fastPAM, the proposed algorithm similarly
consists of two phases, BUILD and SWAP. To keep L fixed,
we force the initial solution to contain L in BUILD, and then
only allow the points in Q to be swapped out of the solution
in the SWAP phase.

The algorithm is sketched in Algorithm 1. The first
phase generates an initial solution L U Q in line 1. After
that, the main search loop for phase two is started at line 3.
In each iteration, the algorithm will go through candidate
points in line 4, calculating the reduction in the total devi-
ation (AT D) for each candidate when swapped in place of
any non-labeled medoid (m ¢ L). Lines 7-12 perform the
actual calculation w.r.t each medoid and accumulate the val-
ues in the AT D vector. The best swap across candidates and
medoids is maintained in (AT D*, m*, x*) on line 13. The
iteration ends by performing the swap between m* and x* as
long as it provides a decrease in T'D. Otherwise, the algo-
rithm has converged and Q is returned as the selected query.

The asymptotic complexity of each iteration in Algo-
rithm 1 is in the order of O(b(n — k)?) in the worst case.
Usually, the number of iterations is less than k as observed
in [39] as well as in our experiments. As a result, the total
worst-case complexity can be represented by O(kb(n — k)?).
With the right cashing of the pairwise distances and the
values returned by n = nearest(), d, = d,,;.5;(), and
dy = de0nqO; the execution time is monopolized by the
nested loops. In our implementation, we opted for a GPU-
friendly version of the algorithm by transforming the inter-
nal loops into matrix operations and processing the candi-
dates in a batch-wise manner. The execution time can be
orders of magnitude faster than the CPU implementation.
On the other hand, any future algorithm for the k-medoids
clustering problem can be easily adapted to risk sampling.

5. Experiments

In this section, we empirically evaluate the performance
of risk sampling on real benchmark datasets. It is organized
as follows: Subsection 5.1 describes the experimental set-
ting. Subsection 5.2 presents the comparative evaluation re-
sults. Subsection 5.3 evaluates the robustness of risk sam-
pling w.r.t the size of validation data.

5.1. Experimental Setting

Our testbed consists of four datasets from three domains:
(1) Publications. From the literature domain, we used
Citeseer-DBLP! and DBLP-Scholar’ datasets; (2) Prod-
ucts. We selected a dataset containing the record pairs from
Abt.com and Buy.com online shopping websites?; (3) Mu-
sic. We manually created the Songs dataset from the 1-
Million Songs corpus', blocked to generate a dataset of size

1https://sitesAgoogleAcom/site/anhaidgroup/useful—stuff/data

30k. The statistics of the test datasets are detailed in 2.
We compare risk sampling, denoted by Risk, with the
following alternatives:

1. Random sampling. The commonly used baseline
method which selects points uniformly from the un-
labeled set;

2. Maximum Entropy and BALD [21]. Both are based
on uncertainty measurement. Maximum Entropy
samples points with the highest entropy value, while
BALD chooses points that maximize the mutual in-
formation with the model parameters.

3. ENS. An ensemble-based uncertainty method that
uses an ensemble of N classifiers and averages soft-
max vectors of each ensemble member as output. Un-
certainty is measured using maximum entropy.

4. CEAL. Complements uncertain examples selected
according to maximum entropy with a set of high-
confidence examples which are softly labeled.

5. Core-Set [40]. It is the state-of-the-art Representa-
tiveness-based approach for DNNs;

6. EGL [53]. The state-of-the-art approach based on Ex-
pected Model Change, it chooses points that cause the
biggest change to the embedding layer parameters;

7. BADGE [1]. A recently proposed approach which
trades off between diversity and uncertainty by sam-
pling points with diverse gradient embeddings.

These techniques can provide a good coverage of the ex-
isting effective AL approaches for deep models. We have
implemented the AL solutions upon the hybrid variant of the
classical DNN model for ER, DeepMatcher’. For the BALD
method that requires test-time dropout, we use a dropout rate
of 0.2 in the inputs to the RNN module in the embedding
contextualization and word aggregation layers. The number
of McDropout iterations is set to 100. The implementation
of ENS uses 5 snapshot ensembles [22] as in the original
work [3]. Their speed, compared with traditional ensembles,
proves very useful in active learning’s many iterations. In the
implementation of CEAL, besides the b samples selected for
query, a set of b high-confidence samples is automatically
labeled using the DNN model’s output probability as a soft
label. Because EGL requires two backward passes for each
example (each pass assumes a different class label), its appli-
cation to the full unlabeled set can be very time-consuming.
Thus, we randomly sample an unlabeled subset on which
EGL-based selection is performed. For Core-Set, BADGE,
and Risk, we use the representations of the classifier’s penul-
timate representation layer, prior to the classification layer,
for both representations and gradients.

As per Definition 1, we use a labeled seed set for ini-
tial model training. We provide 100 labeled examples for
publications datasets, 50 examples for Songs, and 575 ex-
amples (10% of the unlabeled pool) for Abt-Buy. Similarly,
the budget b was chosen to be in a reasonable range w.r.t
each specific domain. b cannot be too small that it does not

2https://github.com/anhaidgroup/deepmatcher/
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Figure 3: Comparative Evaluation: the comparison on each dataset is split in 3 method groups. Performance is evaluated by test

F1-score per training data size. Error bars indicate the upper and lower quintiles among 10 runs.

provide enough data for the DNN model, nor can it be too
large that more data is labeled than needed. For example,
Songs dataset can converge faster with only a few dozens of
pairs while Abt-Buy needs a larger budget to show consider-
able improvements. This is true regardless of the AL method

applied. We use a budget of 100 examples for publications

datasets, 20 for Songs and 10% for Abt-Buy.
AL starts with an instance of the deepmatcher model

trained on the initial seed set. Every AL iteration consists
of running the sampling strategy of choice, retrieving the

Page 7 of 13
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Table 2
Dataset statistics.

Dataset Train Validation Test
Match  Unmatch  Total Match ~ Unmatch  Total Match  Unmatch  Total
Citeseer-DBLP 118 882 1000 222 1778 2000 827 6173 7000
DBLP-Scholar 3207 14016 17223 1070 4672 5742 1070 4672 5742
Abt-Buy 616 5127 5743 206 1710 1916 206 1710 1916
Songs 3655 8124 11779 1217 2710 3927 1236 2691 3927
labels for the query from the dataset (simulating a human 300 X
. . B Risk
oracle), appending the newly labeled data to the training set
and finally retraining a new model from scratch on the full 2501 B Entropy
labeled data so far. In each iteration, the risk features are Coreset

re-extracted from the labeled data and their distributions are
re-estimated. Then, the risk model is re-trained on the val-
idation data. Finally, the risk scores for unlabeled data are
estimated by the risk model and they are actively sampled
by Algorithms 1.

The default hyper-parameters and loss functions for the
deepmatcher model training were used as presented in [35].
The deepmatcher model is trained for 20 epochs with a batch
size of 32 pairs using the Adam optimizer with a learning
rate of 1073, The risk model is similarly optimized using
the Adam optimizer with a learning rate of 1073, and VaR
confidence is set to 0.9. It is trained for 100 epochs with a
batch size of 100 pairs. To overcome the randomness caused
by different model initializations and training data shuffling,
we perform 10 training sessions and report the mean test
Fl-score. For fair comparison, we make sure that all the
methods use the same set of model initializations. For the
approaches that require access to the classifier (all except
Random), we use the model with the best validation perfor-
mance.

5.2. Comparative Evaluation

The evaluation results have been presented in Fig. 3.
Due to the large number of compared methods, we report
their performance on each test dataset in three separate sub-
figures.

It can be observed that random sampling has the over-
all lowest performance. This confirms the need for active
selection. The simple uncertainty method of maximum en-
tropy achieves highly competitive performance on most of
the test datasets, e.g. Abt-Buy, Citeseer-DBLP and Songs.
While the other uncertainty method of BALD shows slightly
higher performance than deterministic maximum entropy on
some datasets. However, the improvement is not sufficiently
consistent, possibly due to the quality of the MCDropout
approximation. On the other hand, ensemble-based uncer-
tainty (ENS) manages to outperform BALD on most datasets
and is more stable. It can also be observed that the Core-Set
approach can be highly competitive while only considering
instance representativeness on most of the test datasets, e.g.
Abt-Buy and Citeseer-DBLP. However, purely built upon
instance representation, it is not very stable: on Songs, its
performance fluctuates wildly. By maximizing the impact

# Mispredictions
— [\~
(@18 j)
o (e}

—_
(e
o

O_
1 2 3 4
Iterations

Figure 4: Misprediction selection rate on Abt-Buy.

on the classifier, EGL is also able to positively impact its
performance. Similarly, making use of gradient informa-
tion, BADGE was mostly on par with EGL except on DBLP-
Scholar, where the gradient-based diversification gave a bet-
ter and more stable performance. Althouth CEAL labels
more data given the same budget as other methods, thanks to
soft-labels, it outperforms uncertainty methods only slightly.

It is clear that risk sampling is able to consistently in-
crease the classifier’s performance across the test datasets. It
can be observed that the performance margins between risk
sampling and alternative methods are considerable in most
cases, especially in earlier iterations (low training sizes).
This result clearly demonstrates that exposing the classifier
to high-risk examples in an early stage can effectively accel-
erate training. Coupled with the representativeness achieved
by core-set clustering, it is able to maintain an advantage
over alternative methods. Finally, as shown in Fig. 3, the
error bar plots for risk sampling are relatively short, even
for the Abt-Buy products dataset which seems to show high
variance overall. This means that the data selected via risk
sampling yields less variance in the classifiers across random
initializations.

An Illustrative Example. The major difference of risk
sampling from previous alternatives is the criterion of mis-
prediction risk. Therefore, we illustrate the efficacy of risk
sampling by examining the number of mispredictions in the
selected batches on the Abt-Buy dataset, which is the most
challenging one. The results are reported in Fig. 4. It can
be seen that risk sampling ends up selecting batches domi-

Nafa et al.: Preprint submitted to Elsevier
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and number of swaps.

nated by mispredictions. For reference, maximum entropy,
which is likely to select mispredictions (since many uncer-
tain points might turn out to be mispredicted), does not pick
up as many as risk sampling. The same can be said about the
core-set approach which only considers instance representa-
tion. The decreasing number of mispredictions throughout
iterations is due to the reduction of such cases in the un-
labeled pool that we are sampling from. Combined with
the observation on their comparative performance in the first
two iterations, these results clearly indicate that mispredic-
tion risk is an informative measure for AL.

5.3. Robustness w.r.t Validation Data Size

Since risk sampling leverages validation data, we further
investigate its performance robustness w.r.t the size of val-
idation data. To this end, we re-run the AL experiment by
varying the validation data ratio used for risk training among
0.25, 0.50 and 1. The results on all datasets are presented
in Fig. 5a-d. For performance reference, we also plot the
result of the core-set approach in the figure. It can be ob-
served that the performance of risk sampling is overall very
robust across ratios, and it consistently outperforms the core-
set approach. It is noteworthy that our evaluation results are
consistent with those reported in [8], which showed that the
performance of LearnRisk is very robust w.r.t the size of val-
idation data. These experimental results bode well for the
application of risk sampling in real scenarios.

5.4. Risk Sampling Efficiency

In this section we evaluate the efficiency of the risk sam-
pling algorithm presented in Subsection 4.2. To this end,
we evaluate its scalability w.r.t the total data size (n) both in
terms of total runtime and number of swaps till convergence.
We fix the number of clusters k = 200 (|L| = 100, |Q| =
100) and variate the data size on the large dataset of DBLP-
Scholar using the risk scores and data representations from
the first iteration of active learning. The runtimes for the
different data sizes are presented in Fig. S5e. Knowing that
the algorithm’s time complexity of O(kb(n — k)?) is depen-
dent on n — k, it is clear that the combination of a small &
(200) and a large n (10000), which produces an extremely
high value for n — k, still converges in a reasonable time.
Moerover, the number of iterations does not exceed k as as-
sumed in Subsection 4.2. Note that the AL iteration runtime
is monopolized by the DNN model training, during which
the sampling step takes way less time.

Moreover, the plot presenting the number of swaps
needed until convergence as a function of data size is given in
Fig. 5f. It clearly shows that the number of swaps increases
at a slow rate with larger data set size (n). Meaning that
the execution time is greatly due to the time needed for the
search for each swap.
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6. Conclusion

In this work, we propose a novel strategy of risk sam-
pling for active learning that selects representative points
with high misclassification risk for labeling. Built upon the
core-set characterization for AL, we theoretically derive an
optimization model based on an upper-bound of the core-set
loss with non-uniform Lipschitz continuity. Due to the NP-
hardness of the defined problem, we then present an efficient
algorithm for its solution. Finally, our empirical study has
validated the efficacy of the proposed approach. For future
work, it is worthy to point out that risk sampling is gener-
ally applicable to other classification tasks; their technical
solutions however need further investigations.

7. Acknowledgements

This work was supported by the National Key Re-
search and Development Program of China [grant number
2018YFB1003400]; the National Natural Science Founda-
tion of China [grant numbers 61732014, 61672432]; the
Fundamental Research Funds for the Central Universities
[grant number 3102019DX1004]; and the Natural Science
Basic Research Plan in Shaanxi Province of China [grant
number 2018JM6086].

A. Proof of Lemma 1
We use the following definition of RNN:

hy =o(W -hy_1 + U - x,)

st. hy = ®;U € R™™ W € R™ and ¢ is an L,-
Lipschitz activation function. Note that, the commonly used
activation functions for RNNs (ex. tanh) are 1-Lipschitz (i.e.
L,=1.

PROOF OF LEMMA 1. Let X € RT*" be an input sequence
of size T (ie. X = {Xq,...,Xy}). For two distinct inputs
X, X' generating hidden states ht,h; e R respectively, we
have:

|lhy = hill, < Lo [IW]I, [Thp_y = b1,

/
+ L U1, l1xp = xgll,

I,

By unfolding the right-hand side in the above inequality,
|Ihy = W11, < LD W [1hy =Ryl
T T-1
+ L [IWI, 7 U, g = xql,
+ o Lo U, Ixp = X7l
For |[U]],, [[W]], < a,
T

|lhg — R[], < D e = LI 1k = x(]],
=1
When p = 2, for an L,-regularized and stable RNN [34]
(a < 1) we have max,c(; 7y @' = a,

T

lIhy =l <o ) lxe =Xl
t=1

Then by applying Cauchy-Schwartz inequality,

Ilhy — W]l < aVT [1X = X'||

For a fully-connected network module F¢ with ny. layers,
trainable parameters w . and o activations, followed by a
C-class Softmax function [40],

|| Fe(hy, wfc) - Fc(hfr, wfc)| l2

Vel

< = VT IX = Xl

For w = {wy.,W,U} and knowing that for a matrix X €
R™M1X][p < y/m 11X |1,
IRNN(X,w) - RNN(X', w)|l, =
|| Fe(hy, wfc) - Fc(hfr, wfc)||2
Cc-1
< V(C-DTm
C
For any fixed y, using the reverse triangle inequality we get,

are X=X,

|l(X7y7 w) - l(Xl7y’ w)l =
[IRNN(X,w) = yll = [IRNNX',w) = yl|,
<|IRNN(X,w) - RNN(X', w)ll,

< VC-DTm

O(nfc+1 X — Xl
< C Il 2

B. Proof of Theorem 1

Here, we study the Lipschitz continuity for the DNN
model defined in Definition 2. We suppose a distance func-

tion Fp(5,,5;) = “s_k - §| as used by the DeepMatcher
model.

PROOF OF THEOREM 1. We start with the expression
k k'
lIsk = sill> < aV/T [1X* = X || p

Let Xk = {F’F} c R(ﬁ+ﬁ)><m,
~ ~/ —_ — g -/
ISk = Sk 2 < s =56 2 + s =5 M2

— —

Ty Ty
<a Q% -5+ Y% =512
=1 t=1
< a\[T + T, |1X* - X¥'||
Finally, the classifier module F takes in the concate-
. . I ~ yh n
nated similarities .S = {Sk}kil‘ Let X; = {Xk}k‘%l— €
RTaX™ be the representation for pair d, s.t T, = ZZi (T +
ﬁ). AndletT = max, T, be the maximal pair length in D.
Then, the resulting similarity matrix satisfies,
15 = 8'llp < aVT 11X, = X1l

The final expression for the loss function following the
same steps as in the proof of Lemma 1 and setting C = 2:

anfc+l —
1. y.w0) =1y, w) < Eo— VT m [1X, = X}1I>
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C. Proof of Theorem 2

PROOF OF THEOREM 2. Let (d;,y;) € U, (d;,y;) € L be
an unlabeled and a labeled pair respectively. Let /(d, y) be
an L-Lipschitz continuous loss function for any pair d with
ground-truth label y w.r.t the model A, trained on LU Q.
We have:

[1(d;, y;) — l(dj’yj)l <L ||Xd,- - de||2

Where L, represents the Lipschitz bound over the slope
of the loss landscape between d; and d; (L; < L). Let
{C1, Gy, ..., Ciryp} represent a clustering of D (D =
U j Cj) where each cluster C y is centered around (d Yy j) (S
C;. Using triangle inequality and summing over (d;, y;) €

¢;

Z Id;,y;) — |Cj| : l(dj’yj)

(d,-,y,-)ECj

< Z Li 11 Xg, = Xq 112
(d;.yDEC;

By summing over all clusters C; and applying triangle

inequality, then multiplying both sides by %,

Y -+ Y

(d;,y;)ED (dj,yj)ELUQ

1
< - ) —
< - Z z L [1Xq, = Xq,112
(dj,yj)ELUQ(d,-,y,-)EC,-

S |

|Cj|l(dj’yj)

Assuming zero loss for labeled data, i.e. V(dj, yj) e Ly
0 :ld Y j) = 0, the cluster-weighted loss average and the
simple loss average are equal, yielding:

1
Z Id;, y) — m Z

(d;.y,)€D (d;.y))ELUQ

l(dj7yj)

S | =

< L [1Xq, = Xq,112

(d;.y))ELUQ (d;.y)EC;

S | =
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